--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: face_age_detection_base_v3_weighted results: [] --- # face_age_detection_base_v3_weighted This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0928 - Accuracy: 0.9691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1216 | 0.9968 | 157 | 0.1257 | 0.9567 | | 0.1109 | 1.9952 | 314 | 0.1100 | 0.9637 | | 0.0947 | 2.9937 | 471 | 0.1097 | 0.9640 | | 0.0745 | 3.9984 | 629 | 0.0928 | 0.9679 | | 0.0565 | 4.9968 | 786 | 0.0941 | 0.9668 | | 0.0716 | 5.9889 | 942 | 0.0928 | 0.9691 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3