File size: 4,646 Bytes
4a5b0d8 5c45428 4a5b0d8 464aa54 4a5b0d8 ca2c162 4a5b0d8 c95a742 4a5b0d8 dbf08c3 dbd87bc ca2c162 8057e61 ca2c162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
license: cc-by-nc-4.0
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- phi3
- conversational
- custom_code
---
# Quantized Octo-planner: On-device Language Model for Planner-Action Agents Framework
This repo includes **GGUF** quantized models, for our Octo-planner model at [NexaAIDev/octopus-planning](https://huggingface.co/NexaAIDev/octopus-planning)
# GGUF Quantization
To run the models, please download them to your local machine using either git clone or [Hugging Face Hub](https://huggingface.co/docs/huggingface_hub/en/guides/download)
```
git clone https://huggingface.co/NexaAIDev/octo-planner-gguf
```
## Run with [llama.cpp](https://github.com/ggerganov/llama.cpp) (Recommended)
1. **Clone and compile:**
```bash
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
# Compile the source code:
make
```
2. **Execute the Model:**
Run the following command in the terminal:
```bash
./llama-cli -m ./path/to/octopus-planning-Q4_K_M.gguf -p "<|user|>Find my presentation for tomorrow's meeting, connect to the conference room projector via Bluetooth, increase the screen brightness, take a screenshot of the final summary slide, and email it to all participants<|end|><|assistant|>"
```
## Run with [Ollama](https://github.com/ollama/ollama)
Since our models have not been uploaded to the Ollama server, please download the models and manually import them into Ollama by following these steps:
1. Install Ollama on your local machine. You can also following the guide from [Ollama GitHub repository](https://github.com/ollama/ollama/blob/main/docs/import.md)
```bash
git clone https://github.com/ollama/ollama.git ollama
```
2. Locate the local Ollama directory:
```bash
cd ollama
```
3. Create a `Modelfile` in your directory
```bash
touch Modelfile
```
4. In the Modelfile, include a `FROM` statement with the path to your local model, and the default parameters:
```bash
FROM ./path/to/octopus-planning-Q4_K_M.gguf
```
5. Use the following command to add the model to Ollama:
```bash
ollama create octopus-planning-Q4_K_M -f Modelfile
```
6. Verify that the model has been successfully imported:
```bash
ollama ls
```
7. Run the mode
```bash
ollama run octopus-planning-Q4_K_M "<|user|>Find my presentation for tomorrow's meeting, connect to the conference room projector via Bluetooth, increase the screen brightness, take a screenshot of the final summary slide, and email it to all participants<|end|><|assistant|>"
```
# Quantized GGUF Models Benchmark
| Name | Quant method | Bits | Size | Use Cases |
| ---------------------------- | ------------ | ---- | -------- | ----------------------------------- |
| octopus-planning-Q2_K.gguf | Q2_K | 2 | 1.42 GB | fast but high loss, not recommended |
| octopus-planning-Q3_K.gguf | Q3_K | 3 | 1.96 GB | extremely not recommended |
| octopus-planning-Q3_K_S.gguf | Q3_K_S | 3 | 1.68 GB | extremely not recommended |
| octopus-planning-Q3_K_M.gguf | Q3_K_M | 3 | 1.96 GB | moderate loss, not very recommended |
| octopus-planning-Q3_K_L.gguf | Q3_K_L | 3 | 2.09 GB | not very recommended |
| octopus-planning-Q4_0.gguf | Q4_0 | 4 | 2.18 GB | moderate speed, recommended |
| octopus-planning-Q4_1.gguf | Q4_1 | 4 | 2.41 GB | moderate speed, recommended |
| octopus-planning-Q4_K.gguf | Q4_K | 4 | 2.39 GB | moderate speed, recommended |
| octopus-planning-Q4_K_S.gguf | Q4_K_S | 4 | 2.19 GB | fast and accurate, very recommended |
| octopus-planning-Q4_K_M.gguf | Q4_K_M | 4 | 2.39 GB | fast, recommended |
| octopus-planning-Q5_0.gguf | Q5_0 | 5 | 2.64 GB | fast, recommended |
| octopus-planning-Q5_1.gguf | Q5_1 | 5 | 2.87 GB | very big, prefer Q4 |
| octopus-planning-Q5_K.gguf | Q5_K | 5 | 2.82 GB | big, recommended |
| octopus-planning-Q5_K_S.gguf | Q5_K_S | 5 | 2.64 GB | big, recommended |
| octopus-planning-Q5_K_M.gguf | Q5_K_M | 5 | 2.82 GB | big, recommended |
| octopus-planning-Q6_K.gguf | Q6_K | 6 | 3.14 GB | very big, not very recommended |
| octopus-planning-Q8_0.gguf | Q8_0 | 8 | 4.06 GB | very big, not very recommended |
| octopus-planning-F16.gguf | F16 | 16 | 7.64 GB | extremely big |
_Quantized with llama.cpp_ |