--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language: - vi --- # NghiemAbe/Vi-Legal-Bi-Encoder-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer from pyvi.ViTokenizer import tokenize sentences = [tokenize("This is an example sentence"), tokenize("Each sentence is converted")] model = SentenceTransformer('NghiemAbe/Vi-Legal-Bi-Encoder-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = [tokenize("This is an example sentence"), tokenize("Each sentence is converted")] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('NghiemAbe/Vi-Legal-Bi-Encoder-v2') model = AutoModel.from_pretrained('NghiemAbe/Vi-Legal-Bi-Encoder-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results I evaluated my [Dev-Legal-Dataset](https://huggingface.co/datasets/NghiemAbe/dev_legal) and here are the results: | Model | R@1 | R@5 | R@10 | R@20 | R@100 | MRR@5 | MRR@10 | MRR@20 | MRR@100 | Avg | |------------------------------------------------------------------------|------|------|------|------|-------|-------|--------|--------|---------|------| | keepitreal/vietnamese-sbert | 0.278| 0.552| 0.649| 0.734| 0.842 | 0.396 | 0.409 | 0.415 | 0.417 | 0.521| | sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 | 0.314| 0.486| 0.585| 0.662| 0.854 | 0.395 | 0.409 | 0.414 | 0.419 | 0.504| | sentence-transformers/paraphrase-multilingual-mpnet-base-v2 | 0.354| 0.553| 0.646| 0.750| 0.896 | 0.449 | 0.461 | 0.468 | 0.472 | 0.561| | intfloat/multilingual-e5-small | 0.488| 0.746| 0.835| 0.906| 0.962 | 0.610 | 0.620 | 0.624 | 0.625 | 0.713| | intfloat/multilingual-e5-base | 0.466| 0.740| 0.840| 0.907| 0.952 | 0.596 | 0.608 | 0.612 | 0.613 | 0.704| | bkai-foundation-models/vietnamese-bi-encoder | 0.644| 0.881| 0.924| 0.954| 0.986 | 0.752 | 0.757 | 0.758 | 0.759 | 0.824| | Vi-Legal-Bi-Encoder-v2 | 0.720| 0.884| 0.935| 0.963| 0.986 | 0.796 | 0.802 | 0.803 | 0.804 | 0.855|