File size: 12,964 Bytes
460f00d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
"""
a modularized deep neural network for 1-d signal data, pytorch version
 
Shenda Hong, Mar 2020
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel

class MyConv1dPadSame(nn.Module):
    """
    extend nn.Conv1d to support SAME padding

    input: (n_sample, in_channels, n_length)
    output: (n_sample, out_channels, (n_length+stride-1)//stride)
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1):
        super(MyConv1dPadSame, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.groups = groups
        self.conv = torch.nn.Conv1d(
            in_channels=self.in_channels, 
            out_channels=self.out_channels, 
            kernel_size=self.kernel_size, 
            stride=self.stride, 
            groups=self.groups)

    def forward(self, x):
        
        net = x
        
        # compute pad shape
        in_dim = net.shape[-1]
        out_dim = (in_dim + self.stride - 1) // self.stride
        p = max(0, (out_dim - 1) * self.stride + self.kernel_size - in_dim)
        pad_left = p // 2
        pad_right = p - pad_left
        net = F.pad(net, (pad_left, pad_right), "constant", 0)
        
        net = self.conv(net)

        return net
        
class MyMaxPool1dPadSame(nn.Module):
    """
    extend nn.MaxPool1d to support SAME padding

    params:
        kernel_size: kernel size
        stride: the stride of the window. Default value is kernel_size
    
    input: (n_sample, n_channel, n_length)
    """
    def __init__(self, kernel_size):
        super(MyMaxPool1dPadSame, self).__init__()
        self.kernel_size = kernel_size
        self.max_pool = torch.nn.MaxPool1d(kernel_size=self.kernel_size)

    def forward(self, x):
        
        net = x
        
        # compute pad shape
        p = max(0, self.kernel_size - 1)
        pad_left = p // 2
        pad_right = p - pad_left
        net = F.pad(net, (pad_left, pad_right), "constant", 0)
        
        net = self.max_pool(net)
        
        return net
    
class Swish(nn.Module):
    def forward(self, x):
        return x * F.sigmoid(x)

class BasicBlock(nn.Module):
    """
    Basic Block: 
        conv1 -> convk -> conv1

    params:
        in_channels: number of input channels
        out_channels: number of output channels
        ratio: ratio of channels to out_channels
        kernel_size: kernel window length
        stride: kernel step size
        groups: number of groups in convk
        downsample: whether downsample length
        use_bn: whether use batch_norm
        use_do: whether use dropout

    input: (n_sample, in_channels, n_length)
    output: (n_sample, out_channels, (n_length+stride-1)//stride)
    """
    def __init__(self, in_channels, out_channels, ratio, kernel_size, stride, groups, downsample, is_first_block=False, use_bn=True, use_do=True):
        super(BasicBlock, self).__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.ratio = ratio
        self.kernel_size = kernel_size
        self.groups = groups
        self.downsample = downsample
        self.stride = stride if self.downsample else 1
        self.is_first_block = is_first_block
        self.use_bn = use_bn
        self.use_do = use_do

        self.middle_channels = int(self.out_channels * self.ratio)

        # the first conv, conv1
        self.bn1 = nn.BatchNorm1d(in_channels)
        self.activation1 = Swish()
        self.do1 = nn.Dropout(p=0.5)
        self.conv1 = MyConv1dPadSame(
            in_channels=self.in_channels, 
            out_channels=self.middle_channels, 
            kernel_size=1, 
            stride=1,
            groups=1)

        # the second conv, convk
        self.bn2 = nn.BatchNorm1d(self.middle_channels)
        self.activation2 = Swish()
        self.do2 = nn.Dropout(p=0.5)
        self.conv2 = MyConv1dPadSame(
            in_channels=self.middle_channels, 
            out_channels=self.middle_channels, 
            kernel_size=self.kernel_size, 
            stride=self.stride,
            groups=self.groups)

        # the third conv, conv1
        self.bn3 = nn.BatchNorm1d(self.middle_channels)
        self.activation3 = Swish()
        self.do3 = nn.Dropout(p=0.5)
        self.conv3 = MyConv1dPadSame(
            in_channels=self.middle_channels, 
            out_channels=self.out_channels, 
            kernel_size=1, 
            stride=1,
            groups=1)

        # Squeeze-and-Excitation
        r = 2
        self.se_fc1 = nn.Linear(self.out_channels, self.out_channels//r)
        self.se_fc2 = nn.Linear(self.out_channels//r, self.out_channels)
        self.se_activation = Swish()

        if self.downsample:
            self.max_pool = MyMaxPool1dPadSame(kernel_size=self.stride)

    def forward(self, x):
        
        identity = x
        
        out = x
        # the first conv, conv1
        if not self.is_first_block:
            if self.use_bn:
                out = self.bn1(out)
            out = self.activation1(out)
            if self.use_do:
                out = self.do1(out)
        out = self.conv1(out)
        
        # the second conv, convk
        if self.use_bn:
            out = self.bn2(out)
        out = self.activation2(out)
        if self.use_do:
            out = self.do2(out)
        out = self.conv2(out)
        
        # the third conv, conv1
        if self.use_bn:
            out = self.bn3(out)
        out = self.activation3(out)
        if self.use_do:
            out = self.do3(out)
        out = self.conv3(out) # (n_sample, n_channel, n_length)

        # Squeeze-and-Excitation
        se = out.mean(-1) # (n_sample, n_channel)
        se = self.se_fc1(se)
        se = self.se_activation(se)
        se = self.se_fc2(se)
        se = F.sigmoid(se) # (n_sample, n_channel)
        out = torch.einsum('abc,ab->abc', out, se)
        
        # if downsample, also downsample identity
        if self.downsample:
            identity = self.max_pool(identity)
            
        # if expand channel, also pad zeros to identity
        if self.out_channels != self.in_channels:
            identity = identity.transpose(-1,-2)
            ch1 = (self.out_channels-self.in_channels)//2
            ch2 = self.out_channels-self.in_channels-ch1
            identity = F.pad(identity, (ch1, ch2), "constant", 0)
            identity = identity.transpose(-1,-2)
        
        # shortcut
        out += identity

        return out

class BasicStage(nn.Module):
    """
    Basic Stage:
        block_1 -> block_2 -> ... -> block_M
    """
    def __init__(self, in_channels, out_channels, ratio, kernel_size, stride, groups, i_stage, m_blocks, use_bn=True, use_do=True, verbose=False):
        super(BasicStage, self).__init__()
        
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.ratio = ratio
        self.kernel_size = kernel_size
        self.groups = groups
        self.i_stage = i_stage
        self.m_blocks = m_blocks
        self.use_bn = use_bn
        self.use_do = use_do
        self.verbose = verbose

        self.block_list = nn.ModuleList()
        for i_block in range(self.m_blocks):
            
            # first block
            if self.i_stage == 0 and i_block == 0:
                self.is_first_block = True
            else:
                self.is_first_block = False
            # downsample, stride, input
            if i_block == 0:
                self.downsample = True
                self.stride = stride
                self.tmp_in_channels = self.in_channels
            else:
                self.downsample = False
                self.stride = 1
                self.tmp_in_channels = self.out_channels
            
            # build block
            tmp_block = BasicBlock(
                in_channels=self.tmp_in_channels, 
                out_channels=self.out_channels, 
                ratio=self.ratio, 
                kernel_size=self.kernel_size, 
                stride=self.stride, 
                groups=self.groups, 
                downsample=self.downsample, 
                is_first_block=self.is_first_block,
                use_bn=self.use_bn, 
                use_do=self.use_do)
            self.block_list.append(tmp_block)

    def forward(self, x):

        out = x

        for i_block in range(self.m_blocks):
            net = self.block_list[i_block]
            out = net(out)
            if self.verbose:
                print('stage: {}, block: {}, in_channels: {}, out_channels: {}, outshape: {}'.format(self.i_stage, i_block, net.in_channels, net.out_channels, list(out.shape)))
                print('stage: {}, block: {}, conv1: {}->{} k={} s={} C={}'.format(self.i_stage, i_block, net.conv1.in_channels, net.conv1.out_channels, net.conv1.kernel_size, net.conv1.stride, net.conv1.groups))
                print('stage: {}, block: {}, convk: {}->{} k={} s={} C={}'.format(self.i_stage, i_block, net.conv2.in_channels, net.conv2.out_channels, net.conv2.kernel_size, net.conv2.stride, net.conv2.groups))
                print('stage: {}, block: {}, conv1: {}->{} k={} s={} C={}'.format(self.i_stage, i_block, net.conv3.in_channels, net.conv3.out_channels, net.conv3.kernel_size, net.conv3.stride, net.conv3.groups))

        return out

class Net1D(nn.Module):
    """
    
    Input:
        X: (n_samples, n_channel, n_length)
        Y: (n_samples)
        
    Output:
        out: (n_samples)
        
    params:
        in_channels
        base_filters
        filter_list: list, filters for each stage
        m_blocks_list: list, number of blocks of each stage
        kernel_size
        stride
        groups_width
        n_stages
        n_classes
        use_bn
        use_do

    """

    def __init__(self, in_channels, base_filters, ratio, filter_list, m_blocks_list, kernel_size, stride, groups_width, n_classes=1, use_bn=True, use_do=True, verbose=False):
        super(Net1D, self).__init__()
        
        self.in_channels = in_channels
        self.base_filters = base_filters
        self.ratio = ratio
        self.filter_list = filter_list
        self.m_blocks_list = m_blocks_list
        self.kernel_size = kernel_size
        self.stride = stride
        self.groups_width = groups_width
        self.n_stages = len(filter_list)
        self.n_classes = n_classes
        self.use_bn = use_bn
        self.use_do = use_do
        self.verbose = verbose

        # first conv
        self.first_conv = MyConv1dPadSame(
            in_channels=in_channels, 
            out_channels=self.base_filters, 
            kernel_size=self.kernel_size, 
            stride=2)
        self.first_bn = nn.BatchNorm1d(base_filters)
        self.first_activation = Swish()

        # stages
        self.stage_list = nn.ModuleList()
        in_channels = self.base_filters
        for i_stage in range(self.n_stages):

            out_channels = self.filter_list[i_stage]
            m_blocks = self.m_blocks_list[i_stage]
            tmp_stage = BasicStage(
                in_channels=in_channels, 
                out_channels=out_channels, 
                ratio=self.ratio, 
                kernel_size=self.kernel_size, 
                stride=self.stride, 
                groups=out_channels//self.groups_width, 
                i_stage=i_stage,
                m_blocks=m_blocks, 
                use_bn=self.use_bn, 
                use_do=self.use_do, 
                verbose=self.verbose)
            self.stage_list.append(tmp_stage)
            in_channels = out_channels

        # final prediction
        self.dense = nn.Linear(in_channels, self.n_classes)
        
    def forward(self, x):
        
        out = x
        
        # first conv
        out = self.first_conv(out)
        if self.use_bn:
            out = self.first_bn(out)
        out = self.first_activation(out)
        
        # stages
        for i_stage in range(self.n_stages):
            net = self.stage_list[i_stage]
            out = net(out)

        # final prediction
        out = out.mean(-1)
        out = self.dense(out)
        
        return out
    
if __name__ == '__main__':
    
    import os
    from torchinfo import summary
    
    os.environ['CUDA_VISIBLE_DEVICES'] = '7'
    
    inp_data = torch.randn((2, 1, 100)).cuda()
    pulse_rate = torch.randn((2, 1)).cuda()
    model = Net1D(
            in_channels=1,
            base_filters=24,
            ratio=1.0,
            filter_list = [24, 48, 96, 192],
            m_blocks_list = [2, 2, 2, 2],
            kernel_size=13,
            stride=1,
            groups_width=12,
            verbose=False,
            n_classes=1,
    ).cuda()
    
    out = model(inp_data, pulse_rate)
    print(out.shape)