Nhut DOANNGUYEN
commited on
Commit
·
c038370
1
Parent(s):
cdffa6b
Version 2.27
Browse files- .DS_Store +0 -0
- README.md +223 -14
- added_tokens.json +0 -1
- config.json +5 -5
- pytorch_model.bin +2 -2
- tokenizer_config.json +1 -1
- vocab.json +1 -1
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
README.md
CHANGED
@@ -42,6 +42,115 @@ import torchaudio
|
|
42 |
from datasets import load_dataset
|
43 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
test_dataset = load_dataset("common_voice", "vi", split="test[:2%]")
|
46 |
|
47 |
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
|
@@ -63,7 +172,7 @@ with torch.no_grad():
|
|
63 |
|
64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
65 |
|
66 |
-
print("Prediction:", processor.batch_decode(predicted_ids))
|
67 |
print("Reference:", test_dataset["sentence"][:2])
|
68 |
```
|
69 |
|
@@ -80,26 +189,125 @@ from datasets import load_dataset, load_metric
|
|
80 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
81 |
import re
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
test_dataset = load_dataset("common_voice", "vi", split="test")
|
84 |
wer = load_metric("wer")
|
85 |
|
86 |
-
processor = Wav2Vec2Processor.from_pretrained(
|
87 |
-
model = Wav2Vec2ForCTC.from_pretrained(
|
88 |
model.to("cuda")
|
89 |
|
90 |
chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
|
93 |
-
# Preprocessing the datasets.
|
94 |
-
# We need to read the aduio files as arrays
|
95 |
-
def speech_file_to_array_fn(batch):
|
96 |
-
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
97 |
-
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
98 |
-
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
99 |
-
return batch
|
100 |
-
|
101 |
-
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
102 |
-
|
103 |
# Preprocessing the datasets.
|
104 |
# We need to read the aduio files as arrays
|
105 |
def evaluate(batch):
|
@@ -110,10 +318,11 @@ def evaluate(batch):
|
|
110 |
|
111 |
pred_ids = torch.argmax(logits, dim=-1)
|
112 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
|
|
|
|
113 |
return batch
|
114 |
|
115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
116 |
-
|
117 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
118 |
```
|
119 |
|
|
|
42 |
from datasets import load_dataset
|
43 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
44 |
|
45 |
+
ENCODER = {
|
46 |
+
"ia ": "iê ",
|
47 |
+
"ìa ": "iề ",
|
48 |
+
"ía ": "iế ",
|
49 |
+
"ỉa ": "iể ",
|
50 |
+
"ĩa ": "iễ ",
|
51 |
+
"ịa ": "iệ ",
|
52 |
+
"ya ": "yê ",
|
53 |
+
"ỳa ": "yề ",
|
54 |
+
"ýa ": "yế ",
|
55 |
+
"ỷa ": "yể ",
|
56 |
+
"ỹa ": "yễ ",
|
57 |
+
"ỵa ": "yệ ",
|
58 |
+
"ua ": "uô ",
|
59 |
+
"ùa ": "uồ ",
|
60 |
+
"úa ": "uố ",
|
61 |
+
"ủa ": "uổ ",
|
62 |
+
"ũa ": "uỗ ",
|
63 |
+
"ụa ": "uộ ",
|
64 |
+
"ưa ": "ươ ",
|
65 |
+
"ừa ": "ườ ",
|
66 |
+
"ứa ": "ướ ",
|
67 |
+
"ửa ": "ưở ",
|
68 |
+
"ữa ": "ưỡ ",
|
69 |
+
"ựa ": "ượ ",
|
70 |
+
"ke": "ce",
|
71 |
+
"kè": "cè",
|
72 |
+
"ké": "cé",
|
73 |
+
"kẻ": "cẻ",
|
74 |
+
"kẽ": "cẽ",
|
75 |
+
"kẹ": "cẹ",
|
76 |
+
"kê": "cê",
|
77 |
+
"kề": "cề",
|
78 |
+
"kế": "cế",
|
79 |
+
"kể": "cể",
|
80 |
+
"kễ": "cễ",
|
81 |
+
"kệ": "cệ",
|
82 |
+
"ki": "ci",
|
83 |
+
"kì": "cì",
|
84 |
+
"kí": "cí",
|
85 |
+
"kỉ": "cỉ",
|
86 |
+
"kĩ": "cĩ",
|
87 |
+
"kị": "cị",
|
88 |
+
"ky": "cy",
|
89 |
+
"kỳ": "cỳ",
|
90 |
+
"ký": "cý",
|
91 |
+
"kỷ": "cỷ",
|
92 |
+
"kỹ": "cỹ",
|
93 |
+
"kỵ": "cỵ",
|
94 |
+
"ghe": "ge",
|
95 |
+
"ghè": "gè",
|
96 |
+
"ghé": "gé",
|
97 |
+
"ghẻ": "gẻ",
|
98 |
+
"ghẽ": "gẽ",
|
99 |
+
"ghẹ": "gẹ",
|
100 |
+
"ghê": "gê",
|
101 |
+
"ghề": "gề",
|
102 |
+
"ghế": "gế",
|
103 |
+
"ghể": "gể",
|
104 |
+
"ghễ": "gễ",
|
105 |
+
"ghệ": "gệ",
|
106 |
+
"ngh": "\x80",
|
107 |
+
"uyê": "\x96",
|
108 |
+
"uyề": "\x97",
|
109 |
+
"uyế": "\x98",
|
110 |
+
"uyể": "\x99",
|
111 |
+
"uyễ": "\x9a",
|
112 |
+
"uyệ": "\x9b",
|
113 |
+
"ng": "\x81",
|
114 |
+
"ch": "\x82",
|
115 |
+
"gh": "\x83",
|
116 |
+
"nh": "\x84",
|
117 |
+
"gi": "\x85",
|
118 |
+
"ph": "\x86",
|
119 |
+
"kh": "\x87",
|
120 |
+
"th": "\x88",
|
121 |
+
"tr": "\x89",
|
122 |
+
"uy": "\x8a",
|
123 |
+
"uỳ": "\x8b",
|
124 |
+
"uý": "\x8c",
|
125 |
+
"uỷ": "\x8d",
|
126 |
+
"uỹ": "\x8e",
|
127 |
+
"uỵ": "\x8f",
|
128 |
+
"iê": "\x90",
|
129 |
+
"iề": "\x91",
|
130 |
+
"iế": "\x92",
|
131 |
+
"iể": "\x93",
|
132 |
+
"iễ": "\x94",
|
133 |
+
"iệ": "\x95",
|
134 |
+
"uô": "\x9c",
|
135 |
+
"uồ": "\x9d",
|
136 |
+
"uố": "\x9e",
|
137 |
+
"uổ": "\x9f",
|
138 |
+
"uỗ": "\xa0",
|
139 |
+
"uộ": "\xa1",
|
140 |
+
"ươ": "\xa2",
|
141 |
+
"ườ": "\xa3",
|
142 |
+
"ướ": "\xa4",
|
143 |
+
"ưở": "\xa5",
|
144 |
+
"ưỡ": "\xa6",
|
145 |
+
"ượ": "\xa7",
|
146 |
+
}
|
147 |
+
|
148 |
+
def decode_string(x):
|
149 |
+
for k, v in list(reversed(list(ENCODER.items()))):
|
150 |
+
x = x.replace(v, k)
|
151 |
+
return x
|
152 |
+
|
153 |
+
|
154 |
test_dataset = load_dataset("common_voice", "vi", split="test[:2%]")
|
155 |
|
156 |
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
|
|
|
172 |
|
173 |
predicted_ids = torch.argmax(logits, dim=-1)
|
174 |
|
175 |
+
print("Prediction:", decode_string(processor.batch_decode(predicted_ids)))
|
176 |
print("Reference:", test_dataset["sentence"][:2])
|
177 |
```
|
178 |
|
|
|
189 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
190 |
import re
|
191 |
|
192 |
+
ENCODER = {
|
193 |
+
"ia ": "iê ",
|
194 |
+
"ìa ": "iề ",
|
195 |
+
"ía ": "iế ",
|
196 |
+
"ỉa ": "iể ",
|
197 |
+
"ĩa ": "iễ ",
|
198 |
+
"ịa ": "iệ ",
|
199 |
+
"ya ": "yê ",
|
200 |
+
"ỳa ": "yề ",
|
201 |
+
"ýa ": "yế ",
|
202 |
+
"ỷa ": "yể ",
|
203 |
+
"ỹa ": "yễ ",
|
204 |
+
"ỵa ": "yệ ",
|
205 |
+
"ua ": "uô ",
|
206 |
+
"ùa ": "uồ ",
|
207 |
+
"úa ": "uố ",
|
208 |
+
"ủa ": "uổ ",
|
209 |
+
"ũa ": "uỗ ",
|
210 |
+
"ụa ": "uộ ",
|
211 |
+
"ưa ": "ươ ",
|
212 |
+
"ừa ": "ườ ",
|
213 |
+
"ứa ": "ướ ",
|
214 |
+
"ửa ": "ưở ",
|
215 |
+
"ữa ": "ưỡ ",
|
216 |
+
"ựa ": "ượ ",
|
217 |
+
"ke": "ce",
|
218 |
+
"kè": "cè",
|
219 |
+
"ké": "cé",
|
220 |
+
"kẻ": "cẻ",
|
221 |
+
"kẽ": "cẽ",
|
222 |
+
"kẹ": "cẹ",
|
223 |
+
"kê": "cê",
|
224 |
+
"kề": "cề",
|
225 |
+
"kế": "cế",
|
226 |
+
"kể": "cể",
|
227 |
+
"kễ": "cễ",
|
228 |
+
"kệ": "cệ",
|
229 |
+
"ki": "ci",
|
230 |
+
"kì": "cì",
|
231 |
+
"kí": "cí",
|
232 |
+
"kỉ": "cỉ",
|
233 |
+
"kĩ": "cĩ",
|
234 |
+
"kị": "cị",
|
235 |
+
"ky": "cy",
|
236 |
+
"kỳ": "cỳ",
|
237 |
+
"ký": "cý",
|
238 |
+
"kỷ": "cỷ",
|
239 |
+
"kỹ": "cỹ",
|
240 |
+
"kỵ": "cỵ",
|
241 |
+
"ghe": "ge",
|
242 |
+
"ghè": "gè",
|
243 |
+
"ghé": "gé",
|
244 |
+
"ghẻ": "gẻ",
|
245 |
+
"ghẽ": "gẽ",
|
246 |
+
"ghẹ": "gẹ",
|
247 |
+
"ghê": "gê",
|
248 |
+
"ghề": "gề",
|
249 |
+
"ghế": "gế",
|
250 |
+
"ghể": "gể",
|
251 |
+
"ghễ": "gễ",
|
252 |
+
"ghệ": "gệ",
|
253 |
+
"ngh": "\x80",
|
254 |
+
"uyê": "\x96",
|
255 |
+
"uyề": "\x97",
|
256 |
+
"uyế": "\x98",
|
257 |
+
"uyể": "\x99",
|
258 |
+
"uyễ": "\x9a",
|
259 |
+
"uyệ": "\x9b",
|
260 |
+
"ng": "\x81",
|
261 |
+
"ch": "\x82",
|
262 |
+
"gh": "\x83",
|
263 |
+
"nh": "\x84",
|
264 |
+
"gi": "\x85",
|
265 |
+
"ph": "\x86",
|
266 |
+
"kh": "\x87",
|
267 |
+
"th": "\x88",
|
268 |
+
"tr": "\x89",
|
269 |
+
"uy": "\x8a",
|
270 |
+
"uỳ": "\x8b",
|
271 |
+
"uý": "\x8c",
|
272 |
+
"uỷ": "\x8d",
|
273 |
+
"uỹ": "\x8e",
|
274 |
+
"uỵ": "\x8f",
|
275 |
+
"iê": "\x90",
|
276 |
+
"iề": "\x91",
|
277 |
+
"iế": "\x92",
|
278 |
+
"iể": "\x93",
|
279 |
+
"iễ": "\x94",
|
280 |
+
"iệ": "\x95",
|
281 |
+
"uô": "\x9c",
|
282 |
+
"uồ": "\x9d",
|
283 |
+
"uố": "\x9e",
|
284 |
+
"uổ": "\x9f",
|
285 |
+
"uỗ": "\xa0",
|
286 |
+
"uộ": "\xa1",
|
287 |
+
"ươ": "\xa2",
|
288 |
+
"ườ": "\xa3",
|
289 |
+
"ướ": "\xa4",
|
290 |
+
"ưở": "\xa5",
|
291 |
+
"ưỡ": "\xa6",
|
292 |
+
"ượ": "\xa7",
|
293 |
+
}
|
294 |
+
|
295 |
+
def decode_string(x):
|
296 |
+
for k, v in list(reversed(list(ENCODER.items()))):
|
297 |
+
x = x.replace(v, k)
|
298 |
+
return x
|
299 |
+
|
300 |
+
|
301 |
test_dataset = load_dataset("common_voice", "vi", split="test")
|
302 |
wer = load_metric("wer")
|
303 |
|
304 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL)
|
305 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL)
|
306 |
model.to("cuda")
|
307 |
|
308 |
chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
|
309 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
# Preprocessing the datasets.
|
312 |
# We need to read the aduio files as arrays
|
313 |
def evaluate(batch):
|
|
|
318 |
|
319 |
pred_ids = torch.argmax(logits, dim=-1)
|
320 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
321 |
+
# decode_string: We replace the encoded letter with the initial letters
|
322 |
+
batch["pred_strings"] = [decode_string(x) for x in batch["pred_strings"]]
|
323 |
return batch
|
324 |
|
325 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
|
|
326 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
327 |
```
|
328 |
|
added_tokens.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"<s>": 91, "</s>": 92}
|
|
|
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/content/gdrive/MyDrive/Colab\\ Notebooks/
|
3 |
"activation_dropout": 0.0,
|
4 |
"apply_spec_augment": true,
|
5 |
"architectures": [
|
@@ -51,7 +51,7 @@
|
|
51 |
"initializer_range": 0.02,
|
52 |
"intermediate_size": 4096,
|
53 |
"layer_norm_eps": 1e-05,
|
54 |
-
"layerdrop": 0.
|
55 |
"mask_channel_length": 10,
|
56 |
"mask_channel_min_space": 1,
|
57 |
"mask_channel_other": 0.0,
|
@@ -62,7 +62,7 @@
|
|
62 |
"mask_time_length": 10,
|
63 |
"mask_time_min_space": 1,
|
64 |
"mask_time_other": 0.0,
|
65 |
-
"mask_time_prob": 0.
|
66 |
"mask_time_selection": "static",
|
67 |
"model_type": "wav2vec2",
|
68 |
"num_attention_heads": 16,
|
@@ -70,7 +70,7 @@
|
|
70 |
"num_conv_pos_embeddings": 128,
|
71 |
"num_feat_extract_layers": 7,
|
72 |
"num_hidden_layers": 24,
|
73 |
-
"pad_token_id":
|
74 |
"transformers_version": "4.4.0",
|
75 |
-
"vocab_size":
|
76 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/content/gdrive/MyDrive/Colab\\ Notebooks/XLSR_V2_26/wav2vec-large-xlsr-vietnamese-demo",
|
3 |
"activation_dropout": 0.0,
|
4 |
"apply_spec_augment": true,
|
5 |
"architectures": [
|
|
|
51 |
"initializer_range": 0.02,
|
52 |
"intermediate_size": 4096,
|
53 |
"layer_norm_eps": 1e-05,
|
54 |
+
"layerdrop": 0.1,
|
55 |
"mask_channel_length": 10,
|
56 |
"mask_channel_min_space": 1,
|
57 |
"mask_channel_other": 0.0,
|
|
|
62 |
"mask_time_length": 10,
|
63 |
"mask_time_min_space": 1,
|
64 |
"mask_time_other": 0.0,
|
65 |
+
"mask_time_prob": 0.05,
|
66 |
"mask_time_selection": "static",
|
67 |
"model_type": "wav2vec2",
|
68 |
"num_attention_heads": 16,
|
|
|
70 |
"num_conv_pos_embeddings": 128,
|
71 |
"num_feat_extract_layers": 7,
|
72 |
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 135,
|
74 |
"transformers_version": "4.4.0",
|
75 |
+
"vocab_size": 136
|
76 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27f8edf2f10fc71c73bf8fb234cd46e66a7ddb59dd0778094aa6c70b750c3e4b
|
3 |
+
size 1262491415
|
tokenizer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
|
vocab.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6, "g": 7, "h": 8, "i": 9, "j": 10, "k": 11, "l": 12, "m": 13, "n": 14, "o": 15, "p": 16, "q": 17, "r": 18, "s": 19, "t": 20, "u": 21, "v": 22, "w": 23, "x": 24, "y": 25, "z": 26, "": 27, "": 28, "": 29, "": 30, "": 31, "
": 32, "": 33, "": 34, "": 35, "": 36, "": 37, "": 38, "": 39, "": 40, "": 41, "": 42, "": 43, "": 44, "": 45, "": 46, "": 47, "": 48, "": 49, "": 50, "": 51, "": 52, "": 53, "": 54, "": 55, "": 56, "": 57, "": 58, " ": 59, "¡": 60, "¢": 61, "£": 62, "¤": 63, "¥": 64, "¦": 65, "§": 66, "à": 67, "á": 68, "â": 69, "ã": 70, "è": 71, "é": 72, "ê": 73, "ì": 74, "í": 75, "ò": 76, "ó": 77, "ô": 78, "õ": 79, "ù": 80, "ú": 81, "ý": 82, "ă": 83, "đ": 84, "ĩ": 85, "ũ": 86, "ơ": 87, "ư": 88, "ạ": 89, "ả": 90, "ấ": 91, "ầ": 92, "ẩ": 93, "ẫ": 94, "ậ": 95, "ắ": 96, "ằ": 97, "ẳ": 98, "ẵ": 99, "ặ": 100, "ẹ": 101, "ẻ": 102, "ẽ": 103, "ế": 104, "ề": 105, "ể": 106, "ễ": 107, "ệ": 108, "ỉ": 109, "ị": 110, "ọ": 111, "ỏ": 112, "ố": 113, "ồ": 114, "ổ": 115, "ỗ": 116, "ộ": 117, "ớ": 118, "ờ": 119, "ở": 120, "ỡ": 121, "ợ": 122, "ụ": 123, "ủ": 124, "ứ": 125, "ừ": 126, "ử": 127, "ữ": 128, "ự": 129, "ỳ": 130, "ỵ": 131, "ỷ": 132, "ỹ": 133, "|": 0, "[UNK]": 134, "[PAD]": 135}
|