Upload handler.py
Browse files- handler.py +40 -0
handler.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import subprocess
|
5 |
+
|
6 |
+
|
7 |
+
# Manually install bitsandbytes
|
8 |
+
try:
|
9 |
+
import bitsandbytes
|
10 |
+
except ImportError:
|
11 |
+
subprocess.check_call([os.sys.executable, "-m", "pip", "install", "bitsandbytes==0.39.1"])
|
12 |
+
subprocess.check_call([os.sys.executable, "-m", "pip", "install", "accelerate==0.20.0"])
|
13 |
+
|
14 |
+
class ModelHandler:
|
15 |
+
def __init__(self):
|
16 |
+
self.model = None
|
17 |
+
self.tokenizer = None
|
18 |
+
|
19 |
+
def load_model(self):
|
20 |
+
# Load token as env var
|
21 |
+
model_id = "NiCETmtm/Llama3_kw_gen_new"
|
22 |
+
token = os.getenv("HF_API_TOKEN")
|
23 |
+
# Load model & tokenizer
|
24 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=token, from_tf=True)
|
25 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
26 |
+
|
27 |
+
def predict(self, inputs):
|
28 |
+
tokens = self.tokenizer(inputs, return_tensors="pt")
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = self.model.generate(**tokens)
|
31 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
32 |
+
|
33 |
+
|
34 |
+
model_handler = ModelHandler()
|
35 |
+
model_handler.load_model()
|
36 |
+
|
37 |
+
def inference(event, context):
|
38 |
+
inputs = event["data"]
|
39 |
+
outputs = model_handler.predict(inputs)
|
40 |
+
return {"predictions": outputs}
|