File size: 15,583 Bytes
1fe3a57
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe181ee4040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe181edc440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685684402946422754, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4vCgPnnXS7yzXQo/4vCgPnnXS7yzXQo/4vCgPnnXS7yzXQo/4vCgPnnXS7yzXQo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARo2FPDaAe7+MC6c/eSMlv+zxsj/8brm/Z8V2P6jBgL+p6VY/VM2mP0aUgL97r5A/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADi8KA+eddLvLNdCj8wY1K8MsItu7h8BDzi8KA+eddLvLNdCj8wY1K8MsItu7h8BDzi8KA+eddLvLNdCj8wY1K8MsItu7h8BDzi8KA+eddLvLNdCj8wY1K8MsItu7h8BDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3143378  -0.01244151  0.54049224]\n [ 0.3143378  -0.01244151  0.54049224]\n [ 0.3143378  -0.01244151  0.54049224]\n [ 0.3143378  -0.01244151  0.54049224]]", "desired_goal": "[[ 0.01630272 -0.9824251   1.3050399 ]\n [-0.6450725   1.3980079  -1.4486995 ]\n [ 0.9639496  -1.0059099   0.8395029 ]\n [ 1.3031411  -1.004525    1.1303552 ]]", "observation": "[[ 0.3143378  -0.01244151  0.54049224 -0.01284103 -0.00265135  0.00808638]\n [ 0.3143378  -0.01244151  0.54049224 -0.01284103 -0.00265135  0.00808638]\n [ 0.3143378  -0.01244151  0.54049224 -0.01284103 -0.00265135  0.00808638]\n [ 0.3143378  -0.01244151  0.54049224 -0.01284103 -0.00265135  0.00808638]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAC1r/vTAijT2JXPk9gskWPlBAVT3sN1c9wFXEvX1NCj4IVGg+9v65PLqzTb1gFks8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.12468346  0.06891286  0.12175853]\n [ 0.14725307  0.05206329  0.05254357]\n [-0.09586668  0.13506122  0.22688305]\n [ 0.02270458 -0.05022023  0.01239547]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITDRIwVNI87+UhpRSlIwBbJRLMowBdJRHQICogUN8VpN1fZQoaAZoCWgPQwixNPCjGjb4v5SGlFKUaBVLMmgWR0CApuH4XXRPdX2UKGgGaAloD0MIEyhiEcOO8b+UhpRSlGgVSzJoFkdAgKWICU5dW3V9lChoBmgJaA9DCKJ8QQsJGPe/lIaUUpRoFUsyaBZHQICkIFRpDeF1fZQoaAZoCWgPQwi1F9F2TJ3zv5SGlFKUaBVLMmgWR0CArD9Brvb5dX2UKGgGaAloD0MIzO1e7pMj97+UhpRSlGgVSzJoFkdAgKqliBoVVXV9lChoBmgJaA9DCHbAdcWMsPW/lIaUUpRoFUsyaBZHQICpT4rSVnp1fZQoaAZoCWgPQwge39416Iv2v5SGlFKUaBVLMmgWR0CAp+rRSgoPdX2UKGgGaAloD0MIo3a/CvDd+r+UhpRSlGgVSzJoFkdAgK/lGG21D3V9lChoBmgJaA9DCCIa3UHsTPW/lIaUUpRoFUsyaBZHQICuRvtMPBl1fZQoaAZoCWgPQwh6/rRRnc7xv5SGlFKUaBVLMmgWR0CArO3m3fALdX2UKGgGaAloD0MIlZuopblV8r+UhpRSlGgVSzJoFkdAgKuGbsniN3V9lChoBmgJaA9DCIbLKmwGeP6/lIaUUpRoFUsyaBZHQIC0k8mrsB11fZQoaAZoCWgPQwjLSpNS0K3zv5SGlFKUaBVLMmgWR0CAsvl0YCQtdX2UKGgGaAloD0MIEw8om3KF8b+UhpRSlGgVSzJoFkdAgLGiLl3hXXV9lChoBmgJaA9DCJeNzvkpjvu/lIaUUpRoFUsyaBZHQICwPTy8SPF1fZQoaAZoCWgPQwj67laW6Czyv5SGlFKUaBVLMmgWR0CAusMXrMTwdX2UKGgGaAloD0MIGJY/3xbs9L+UhpRSlGgVSzJoFkdAgLkm+TNdJXV9lChoBmgJaA9DCD1fs1w2evq/lIaUUpRoFUsyaBZHQIC3z4xk/bF1fZQoaAZoCWgPQwjoEg69xYPyv5SGlFKUaBVLMmgWR0CAtmpYs/Y8dX2UKGgGaAloD0MIW+1hLxSw9L+UhpRSlGgVSzJoFkdAgMD0cfeUIXV9lChoBmgJaA9DCIdrtYe90O+/lIaUUpRoFUsyaBZHQIC/V/H5rQB1fZQoaAZoCWgPQwioqtBALFv3v5SGlFKUaBVLMmgWR0CAvgCSzPa+dX2UKGgGaAloD0MIdOygEtex9L+UhpRSlGgVSzJoFkdAgLybiqABk3V9lChoBmgJaA9DCHOgh9o2DPa/lIaUUpRoFUsyaBZHQIDHIvvjOs11fZQoaAZoCWgPQwhtc2N6wpLtv5SGlFKUaBVLMmgWR0CAxYd7v5P/dX2UKGgGaAloD0MI1qwzvi9u9L+UhpRSlGgVSzJoFkdAgMQw/oq0+nV9lChoBmgJaA9DCJF++zpwTvS/lIaUUpRoFUsyaBZHQIDCzFAE+xJ1fZQoaAZoCWgPQwigbwuW6kL7v5SGlFKUaBVLMmgWR0CAzbZyMkyDdX2UKGgGaAloD0MI6dZrelBQ8b+UhpRSlGgVSzJoFkdAgMwczZYgaHV9lChoBmgJaA9DCPN1Gf7Tjfm/lIaUUpRoFUsyaBZHQIDKxnYg7o11fZQoaAZoCWgPQwjByMuaWKD5v5SGlFKUaBVLMmgWR0CAyWLqD9OzdX2UKGgGaAloD0MIrI2xE17C+L+UhpRSlGgVSzJoFkdAgNRFFtsN2HV9lChoBmgJaA9DCEPHDipx3fW/lIaUUpRoFUsyaBZHQIDSqPfbblB1fZQoaAZoCWgPQwjyI37FGu7wv5SGlFKUaBVLMmgWR0CA0VKSPluFdX2UKGgGaAloD0MI3gGetHDZ8r+UhpRSlGgVSzJoFkdAgM/tn5BToHV9lChoBmgJaA9DCKvoD808Ofm/lIaUUpRoFUsyaBZHQIDaT/6wdKd1fZQoaAZoCWgPQwgIAI49e271v5SGlFKUaBVLMmgWR0CA2LSJj2BbdX2UKGgGaAloD0MILc2tEFbj87+UhpRSlGgVSzJoFkdAgNddC/oJRnV9lChoBmgJaA9DCLB1qRH6Wfu/lIaUUpRoFUsyaBZHQIDV91r6+Fl1fZQoaAZoCWgPQwjyJOmayff5v5SGlFKUaBVLMmgWR0CA4GloDgZTdX2UKGgGaAloD0MIIJkOnZ439b+UhpRSlGgVSzJoFkdAgN7Np22Xs3V9lChoBmgJaA9DCAqGcw0zNPW/lIaUUpRoFUsyaBZHQIDddiay8jB1fZQoaAZoCWgPQwh4liAjoALzv5SGlFKUaBVLMmgWR0CA3BFpfx+bdX2UKGgGaAloD0MIKGN8mL2s8L+UhpRSlGgVSzJoFkdAgOR876pHZ3V9lChoBmgJaA9DCErOiT20j/a/lIaUUpRoFUsyaBZHQIDi3eN1hb51fZQoaAZoCWgPQwgVyOwseifzv5SGlFKUaBVLMmgWR0CA4YPHT7VKdX2UKGgGaAloD0MI+rMfKSID9b+UhpRSlGgVSzJoFkdAgOAcX3xnWnV9lChoBmgJaA9DCJJ1OLpKd/e/lIaUUpRoFUsyaBZHQIDoC9sabWp1fZQoaAZoCWgPQwj1oQvqWyb2v5SGlFKUaBVLMmgWR0CA5m0SAYpEdX2UKGgGaAloD0MI7kCd8ugG9L+UhpRSlGgVSzJoFkdAgOUTMzMzM3V9lChoBmgJaA9DCKRVLekox/e/lIaUUpRoFUsyaBZHQIDjqzcAR051fZQoaAZoCWgPQwhwQbYsX1f9v5SGlFKUaBVLMmgWR0CA66rn1WbPdX2UKGgGaAloD0MIj/8CQYDM9L+UhpRSlGgVSzJoFkdAgOoL433pOnV9lChoBmgJaA9DCLHbZ5WZ0vS/lIaUUpRoFUsyaBZHQIDoseOn2qV1fZQoaAZoCWgPQwisAN9t3vj2v5SGlFKUaBVLMmgWR0CA50qwyIpIdX2UKGgGaAloD0MI31M57Sm5+r+UhpRSlGgVSzJoFkdAgO9fqHGjsXV9lChoBmgJaA9DCCRjtfl/lfa/lIaUUpRoFUsyaBZHQIDtwSYgJTl1fZQoaAZoCWgPQwhkrgyqDQ73v5SGlFKUaBVLMmgWR0CA7Gjqv/zbdX2UKGgGaAloD0MIq8spATHJ8r+UhpRSlGgVSzJoFkdAgOsBSLqD9XV9lChoBmgJaA9DCE4K8x5nWve/lIaUUpRoFUsyaBZHQIDy/kLhJiB1fZQoaAZoCWgPQwgychb2tMP2v5SGlFKUaBVLMmgWR0CA8V9FWn0kdX2UKGgGaAloD0MI5iSUvhCy87+UhpRSlGgVSzJoFkdAgPAFvybx3HV9lChoBmgJaA9DCEcFTraBe/S/lIaUUpRoFUsyaBZHQIDunq/ub7V1fZQoaAZoCWgPQwibPdAKDJn4v5SGlFKUaBVLMmgWR0CA9qVpKzzFdX2UKGgGaAloD0MI2T15WKj18b+UhpRSlGgVSzJoFkdAgPUHerMkhXV9lChoBmgJaA9DCNrhr8kadfK/lIaUUpRoFUsyaBZHQIDzrb1yvLZ1fZQoaAZoCWgPQwi0c5oF2h34v5SGlFKUaBVLMmgWR0CA8ka/ATIvdX2UKGgGaAloD0MI5Lop5bXS87+UhpRSlGgVSzJoFkdAgPpaqjrRjXV9lChoBmgJaA9DCG7A54cRgvO/lIaUUpRoFUsyaBZHQID4u89Oh011fZQoaAZoCWgPQwgaUdobfKH5v5SGlFKUaBVLMmgWR0CA92HIIWxhdX2UKGgGaAloD0MIqaROQBOh+L+UhpRSlGgVSzJoFkdAgPX557gKnnV9lChoBmgJaA9DCMO68e7ImPi/lIaUUpRoFUsyaBZHQID94NsnAqN1fZQoaAZoCWgPQwirWtJRDub0v5SGlFKUaBVLMmgWR0CA/EHSF49pdX2UKGgGaAloD0MIpYRgVb2887+UhpRSlGgVSzJoFkdAgPrn+6y0KXV9lChoBmgJaA9DCHqrrkM1Zfe/lIaUUpRoFUsyaBZHQID5gUDdP+J1fZQoaAZoCWgPQwiqgeZz7vbxv5SGlFKUaBVLMmgWR0CBAZMrVe8gdX2UKGgGaAloD0MIHZHvUurS8r+UhpRSlGgVSzJoFkdAgP/0Eovzv3V9lChoBmgJaA9DCFVLOsrBrPW/lIaUUpRoFUsyaBZHQID+mzSkTHt1fZQoaAZoCWgPQwgRVI1eDRD0v5SGlFKUaBVLMmgWR0CA/TQ7cO9WdX2UKGgGaAloD0MI6Xx4liBj97+UhpRSlGgVSzJoFkdAgQUlsP8Q7XV9lChoBmgJaA9DCGniHeBJS/S/lIaUUpRoFUsyaBZHQIEDhsImgJ11fZQoaAZoCWgPQwhuhhvw+SH0v5SGlFKUaBVLMmgWR0CBAi0KJEYwdX2UKGgGaAloD0MIFHXmHhL+9L+UhpRSlGgVSzJoFkdAgQDFDv3JxXV9lChoBmgJaA9DCCjv42iO7PK/lIaUUpRoFUsyaBZHQIEIq9XcQAd1fZQoaAZoCWgPQwjAXmHB/YDyv5SGlFKUaBVLMmgWR0CBBw0u14PgdX2UKGgGaAloD0MIayqLwi6K9L+UhpRSlGgVSzJoFkdAgQWzI/7iynV9lChoBmgJaA9DCJs3TgrzXvK/lIaUUpRoFUsyaBZHQIEESx9oexR1fZQoaAZoCWgPQwhpNo/DYH74v5SGlFKUaBVLMmgWR0CBDB5AQg9vdX2UKGgGaAloD0MIwF3260538r+UhpRSlGgVSzJoFkdAgQp/PHDJl3V9lChoBmgJaA9DCO8fC9Eh8PG/lIaUUpRoFUsyaBZHQIEJJTS9du51fZQoaAZoCWgPQwjU0twKYXX1v5SGlFKUaBVLMmgWR0CBB71rZamodX2UKGgGaAloD0MI2epySkAM87+UhpRSlGgVSzJoFkdAgQ+0yHmA9XV9lChoBmgJaA9DCPMhqBq9WvW/lIaUUpRoFUsyaBZHQIEOFilSCOF1fZQoaAZoCWgPQwhjQswlVVv2v5SGlFKUaBVLMmgWR0CBDLxvvSc9dX2UKGgGaAloD0MIdEF9y5yu9r+UhpRSlGgVSzJoFkdAgQtWxptaZHV9lChoBmgJaA9DCN46/3bZL++/lIaUUpRoFUsyaBZHQIETP0VafSR1fZQoaAZoCWgPQwiH3Aw34DPyv5SGlFKUaBVLMmgWR0CBEaCUX531dX2UKGgGaAloD0MIQX+hR4we9r+UhpRSlGgVSzJoFkdAgRBHrIHTqnV9lChoBmgJaA9DCLxa7swEw/C/lIaUUpRoFUsyaBZHQIEO4BHTZxt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}