## Usage ```python import requests from PIL import Image import torch from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration model_id = "NicoZenith/onevision-7b-all-vqa-conv" model = LlavaOnevisionForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(0) processor = AutoProcessor.from_pretrained(model_id) conversation = [ { "role": "user", "content": [ {"type": "text", "text": "What can you say about this X-ray?"}, {"type": "image"}, ], }, ] prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) image_file = "https://prod-images-static.radiopaedia.org/images/29923576/fed73420497c8622734f21ce20fc91_gallery.jpeg" raw_image = Image.open(requests.get(image_file, stream=True).raw) inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16) output = model.generate(**inputs, max_new_tokens=200, do_sample=False) response_text = processor.decode(output[0][2:], skip_special_tokens=True) response_text = response_text.split("assistant\n")[-1] print(response_text)