--- language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-finetuned-minds14 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: MInDS-1 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.34415584415584416 --- # whisper-tiny-finetuned-minds14 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the MInDS-1 dataset. It achieves the following results on the evaluation set: - Loss: 0.6315 - Wer Ortho: 0.3467 - Wer: 0.3442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0008 | 17.86 | 500 | 0.6315 | 0.3467 | 0.3442 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3