NikitaBaramiia commited on
Commit
e934572
·
1 Parent(s): 05e8ef5

Upload PPO LunarLander-v2 trained agent (new version)

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 258.97 +/- 20.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6b19dd2e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6b19dd2ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6b19dd2f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6b19dd6040>", "_build": "<function ActorCriticPolicy._build at 0x7f6b19dd60d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6b19dd6160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6b19dd61f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6b19dd6280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6b19dd6310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6b19dd63a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6b19dd6430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6b19dd64c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6b19dcd1e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673791765672267114, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNEwb3A88M+gnf5vbsCkL4+/Oa9DhPlOwAAAAAAAAAA1dyLvqbabj9xDsK+O9O+vjVNUr6WsBe9AAAAAAAAAAAa5Hw9ezKSuv8HK7r3oRC10boNOrzgRTkAAIA/AACAP2AbFL6aXa0/pkcyvyfRwb69Nbq9XFg3vgAAAAAAAAAAIG40vlGpST7TblE+xMEXvtcnezzXsqw8AAAAAAAAAACarLa8RKTfPRRKSD5DARu+JB3wPIYpzDwAAAAAAAAAAJojz7yPiiu6mpKIuk0MJLYNrzQ70jCeOQAAgD8AAIA/mhz+vBQC8LpljPQ7is9dPOy6I7wn+0I9AACAPwAAgD+Nv0c+KUJWvCVXVTpTdU24V0u1vX1jgLkAAIA/AACAP2oYbL6sb8c+0ZyLPoKHPL4FQEU8mO5XPQAAAAAAAAAA4MZCPnPc5T6OmSO+7yBmvhj2Kj1eHEy9AAAAAAAAAACa/R+8VkMIPTs97byONBC+Co/BvT5YET0AAAAAAAAAAAqm375qvy8/03Brviwbsb6Pnpe+YTbMPAAAAAAAAAAAgDigPYuv/z05Jjm+foZivoXokL2T2NG8AAAAAAAAAACgJjK+yP+avI9VSL4Oa9m8NKEGPqr8rD0AAIA/AACAPwBAYDsxU7U/1XGxPslFgT53s4G7gcagvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQl96+/MTbkCUhpRSlIwBbJRNRQGMAXSUR0CjhQatcObzdX2UKGgGaAloD0MINGYS9YICXkCUhpRSlGgVTegDaBZHQKOFk/VRUFV1fZQoaAZoCWgPQwi1M0xtqVZuQJSGlFKUaBVNFgFoFkdAo4WhcmjTKHV9lChoBmgJaA9DCMWu7e0WAG5AlIaUUpRoFU10AWgWR0CjhcyxRl6JdX2UKGgGaAloD0MIeSEdHkJ1ckCUhpRSlGgVTRkBaBZHQKOGFD2rXDp1fZQoaAZoCWgPQwhKXwg5b35xQJSGlFKUaBVL/GgWR0Cjhql5WzWxdX2UKGgGaAloD0MImzqPiv+KbkCUhpRSlGgVTX4BaBZHQKOHv5N47ih1fZQoaAZoCWgPQwiZgcr493NTQJSGlFKUaBVN6ANoFkdAo4fRQpF1CHV9lChoBmgJaA9DCO5brROX1HBAlIaUUpRoFU0hAWgWR0Cjh+HM2WIHdX2UKGgGaAloD0MIWfePhehib0CUhpRSlGgVTRQBaBZHQKOH+TGo73h1fZQoaAZoCWgPQwiI1oo2h05xQJSGlFKUaBVNIQFoFkdAo4hDEBKcu3V9lChoBmgJaA9DCB40u+5t+3BAlIaUUpRoFU1QAWgWR0CjiMI/7iyZdX2UKGgGaAloD0MI7ZqQ1pjqcUCUhpRSlGgVTQ0BaBZHQKOI0hXbM5h1fZQoaAZoCWgPQwhVaYtrPKdxQJSGlFKUaBVNCwFoFkdAo4kPCVKPGXV9lChoBmgJaA9DCPTDCOGRhnBAlIaUUpRoFU0hAWgWR0CjichpQDV6dX2UKGgGaAloD0MIJnMs7yqJbECUhpRSlGgVTQcBaBZHQKOJ2vdM0xd1fZQoaAZoCWgPQwiwAny3+X5yQJSGlFKUaBVNKQFoFkdAo4nwUzsQd3V9lChoBmgJaA9DCOSfGcSHe3JAlIaUUpRoFU0aAWgWR0CjilcS5AhTdX2UKGgGaAloD0MIVft0PCZtcECUhpRSlGgVTSgBaBZHQKOKZLns9jh1fZQoaAZoCWgPQwgXuaerO9RtQJSGlFKUaBVNHAFoFkdAo4qeuDBdlnV9lChoBmgJaA9DCKgZUkVxgXFAlIaUUpRoFU0uAWgWR0Cji3Bf0EowdX2UKGgGaAloD0MI4pANpEtfcUCUhpRSlGgVS/poFkdAo4uB9JBgNXV9lChoBmgJaA9DCKqB5nPu0nBAlIaUUpRoFU0eAWgWR0CjjBzwMH8kdX2UKGgGaAloD0MIkSkfgirFbUCUhpRSlGgVTTMBaBZHQKOMhHZsbed1fZQoaAZoCWgPQwhhinJpvIpyQJSGlFKUaBVL+2gWR0CjjJTLOiWWdX2UKGgGaAloD0MIBg5o6UqocECUhpRSlGgVTSMBaBZHQKOMrbRnezl1fZQoaAZoCWgPQwjLMO4GUR1wQJSGlFKUaBVNOwFoFkdAo4y7544ZM3V9lChoBmgJaA9DCC7kEdxITW9AlIaUUpRoFU0bAWgWR0CjjRmY8dPtdX2UKGgGaAloD0MIg/jAjr+zcECUhpRSlGgVTSUBaBZHQKONfI+W4Vh1fZQoaAZoCWgPQwjfb7TjBkZtQJSGlFKUaBVNDwNoFkdAo43jCzkZJnV9lChoBmgJaA9DCMa+ZOMBAHJAlIaUUpRoFUv9aBZHQKOOHl3hXKd1fZQoaAZoCWgPQwipFDsah0xxQJSGlFKUaBVNJwFoFkdAo45AdQwbl3V9lChoBmgJaA9DCDze5Lco33FAlIaUUpRoFU0uAWgWR0Cjjkq4x1xLdX2UKGgGaAloD0MI71hskwoEcECUhpRSlGgVTRgBaBZHQKOOwBV+7UZ1fZQoaAZoCWgPQwjl8bT8AE9xQJSGlFKUaBVNWQFoFkdAo478/jbSJHV9lChoBmgJaA9DCG4ZcJYS6G5AlIaUUpRoFU09AWgWR0CjjwkYoAn2dX2UKGgGaAloD0MIUwPN55zccUCUhpRSlGgVTRIBaBZHQKOPaekHlfZ1fZQoaAZoCWgPQwgST3YzI3RxQJSGlFKUaBVNIAFoFkdAo4+LiEQGwHV9lChoBmgJaA9DCOymlNdK/2tAlIaUUpRoFU0GAWgWR0CjkDtmL9/CdX2UKGgGaAloD0MId9hEZq66ckCUhpRSlGgVTR0BaBZHQKOQaXIEKVp1fZQoaAZoCWgPQwhv2LYoM4ZtQJSGlFKUaBVNHgFoFkdAo5Ch4yGi6HV9lChoBmgJaA9DCAqGcw2zzXJAlIaUUpRoFU0oAWgWR0CjkKHFPznSdX2UKGgGaAloD0MIHeT1YBJUcUCUhpRSlGgVTVIBaBZHQKOQy95hScd1fZQoaAZoCWgPQwjIz0au2ydyQJSGlFKUaBVNJwFoFkdAo5F1sSCe3HV9lChoBmgJaA9DCDTz5JpCi3NAlIaUUpRoFU0TAWgWR0CjkY0Hpr1vdX2UKGgGaAloD0MItB6+TJSKcECUhpRSlGgVTQsBaBZHQKOdz2ZiNKh1fZQoaAZoCWgPQwi/Khcqf7RtQJSGlFKUaBVNFAFoFkdAo54SDh99dHV9lChoBmgJaA9DCNNp3Qa1GW5AlIaUUpRoFU0LAWgWR0CjnoANG3F2dX2UKGgGaAloD0MI/dtlv26+b0CUhpRSlGgVTTABaBZHQKOeiDB/I811fZQoaAZoCWgPQwgZr3lV589uQJSGlFKUaBVNkgFoFkdAo57ERjBl+XV9lChoBmgJaA9DCIZzDTP02nBAlIaUUpRoFUv7aBZHQKOe+xWT5ft1fZQoaAZoCWgPQwhA3NWryNBuQJSGlFKUaBVNHwFoFkdAo58E1TBInXV9lChoBmgJaA9DCII2OXxS/WpAlIaUUpRoFU0fAWgWR0Cjn4kh7mdRdX2UKGgGaAloD0MIgJ4GDFIocUCUhpRSlGgVTVQBaBZHQKOfoaya/h51fZQoaAZoCWgPQwgEWrqCbf1yQJSGlFKUaBVNGAFoFkdAo6BL+zdDY3V9lChoBmgJaA9DCOD0Lt6PomxAlIaUUpRoFU0bAWgWR0CjoJl1B+nZdX2UKGgGaAloD0MI2jo42BtkbUCUhpRSlGgVTSUBaBZHQKOg+u9vjwR1fZQoaAZoCWgPQwjQCgxZXWtwQJSGlFKUaBVNVAFoFkdAo6ETcfvF33V9lChoBmgJaA9DCH7ja89sIHBAlIaUUpRoFU1AAWgWR0CjoTCYkVvddX2UKGgGaAloD0MIAz+qYX/OcECUhpRSlGgVTRIBaBZHQKOhbaKUFB91fZQoaAZoCWgPQwhsPxnjQxpuQJSGlFKUaBVNGAFoFkdAo6GZzNliB3V9lChoBmgJaA9DCJLoZRSLlXBAlIaUUpRoFU0eAWgWR0Cjoc557gKndX2UKGgGaAloD0MI492RsRq/cECUhpRSlGgVTRwBaBZHQKOiDSYPXkJ1fZQoaAZoCWgPQwigi4aMx4dxQJSGlFKUaBVNAQFoFkdAo6ITDZUT+XV9lChoBmgJaA9DCFLy6hwDd3FAlIaUUpRoFU0VAWgWR0Cjolv/R3NcdX2UKGgGaAloD0MIWmWmtP6Rb0CUhpRSlGgVTQoBaBZHQKOicN6w+t91fZQoaAZoCWgPQwgIy9jQzUtwQJSGlFKUaBVNMwFoFkdAo6M2ZqmCRXV9lChoBmgJaA9DCKEt51Jcem9AlIaUUpRoFU1DAWgWR0Cjo3vhybQUdX2UKGgGaAloD0MIvcKC+0HQckCUhpRSlGgVTR8BaBZHQKOjkVVPva11fZQoaAZoCWgPQwhUH0jeefhxQJSGlFKUaBVNIwFoFkdAo6O1vddmhHV9lChoBmgJaA9DCFclkX0Qr25AlIaUUpRoFUv3aBZHQKOkB1klNUR1fZQoaAZoCWgPQwic4QZ8fn9wQJSGlFKUaBVNEgFoFkdAo6QilBQem3V9lChoBmgJaA9DCBHEeThBbnJAlIaUUpRoFU0PAWgWR0CjpKCz1K5DdX2UKGgGaAloD0MIq+gPzTySbkCUhpRSlGgVTQcBaBZHQKOk7SgoPTZ1fZQoaAZoCWgPQwhJSnoY2tNtQJSGlFKUaBVNMwFoFkdAo6U+7xusLnV9lChoBmgJaA9DCDUlWYcjKHFAlIaUUpRoFU0cAWgWR0CjpW58BuGcdX2UKGgGaAloD0MIFM5uLVMHckCUhpRSlGgVTQIBaBZHQKOliMyad+Z1fZQoaAZoCWgPQwh2iH/YknJxQJSGlFKUaBVNQAFoFkdAo6WQV0tAcHV9lChoBmgJaA9DCLmOccVF0HBAlIaUUpRoFU0EAWgWR0CjpdgRTS9edX2UKGgGaAloD0MILQsm/ihtcECUhpRSlGgVTQ8BaBZHQKOmEtCiRGN1fZQoaAZoCWgPQwjecvVj0x5yQJSGlFKUaBVNUgFoFkdAo6ZZ1Tzd13V9lChoBmgJaA9DCLUbfczH33FAlIaUUpRoFU1aAWgWR0Cjpq3kPtladX2UKGgGaAloD0MIduJyvAJVcUCUhpRSlGgVTR8BaBZHQKOnFnNgSe11fZQoaAZoCWgPQwiBlUOL7N9uQJSGlFKUaBVNKgFoFkdAo6eL0voNeHV9lChoBmgJaA9DCDeMguCx2HBAlIaUUpRoFU0bAWgWR0Cjp5c8cMmXdX2UKGgGaAloD0MIajANw0dmcECUhpRSlGgVTSkBaBZHQKOnoG21D0F1fZQoaAZoCWgPQwgvh913DJtxQJSGlFKUaBVNMAFoFkdAo6gy2F36h3V9lChoBmgJaA9DCEtzK4SV/3BAlIaUUpRoFU07AWgWR0CjqHpXQtz0dX2UKGgGaAloD0MIxw+VRoy3ckCUhpRSlGgVTSUBaBZHQKOos/Efkmx1fZQoaAZoCWgPQwgh5Lz/D7NwQJSGlFKUaBVNFAFoFkdAo6jDRD1GsnV9lChoBmgJaA9DCGMNF7kn+nJAlIaUUpRoFUvyaBZHQKOo3kbxVhl1fZQoaAZoCWgPQwhNh07Pu3RvQJSGlFKUaBVNFAFoFkdAo6k0J8fFJnV9lChoBmgJaA9DCL0eTIqPDG5AlIaUUpRoFU0sAWgWR0CjqV7EgntwdX2UKGgGaAloD0MIryR5rq+scECUhpRSlGgVTQABaBZHQKOpox1PnCB1fZQoaAZoCWgPQwj4iQPod8dwQJSGlFKUaBVNKQFoFkdAo6n8HyEtd3V9lChoBmgJaA9DCKoKDcSySG9AlIaUUpRoFU0JAWgWR0Cjqg84YJmedX2UKGgGaAloD0MIjKAxk+hmcUCUhpRSlGgVTYEBaBZHQKOq2plz2ex1fZQoaAZoCWgPQwj0qPi/4x5yQJSGlFKUaBVNQwFoFkdAo6s4WgvlEXV9lChoBmgJaA9DCEtzK4RV/nFAlIaUUpRoFU0mAWgWR0Cjq7qT0QK8dX2UKGgGaAloD0MIGCE82jhBcUCUhpRSlGgVS/NoFkdAo6wEo6S1V3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.9995, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b262ca095c2dadd8c1b30acbe36f27adfde501eb2fda9c734bd68a41939c692
3
+ size 147417
ppo-LunarLander-v2-3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2-3/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6b19dd2e50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6b19dd2ee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6b19dd2f70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6b19dd6040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6b19dd60d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6b19dd6160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6b19dd61f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6b19dd6280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6b19dd6310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6b19dd63a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6b19dd6430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6b19dd64c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f6b19dcd1e0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673791765672267114,
52
+ "learning_rate": 0.001,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNEwb3A88M+gnf5vbsCkL4+/Oa9DhPlOwAAAAAAAAAA1dyLvqbabj9xDsK+O9O+vjVNUr6WsBe9AAAAAAAAAAAa5Hw9ezKSuv8HK7r3oRC10boNOrzgRTkAAIA/AACAP2AbFL6aXa0/pkcyvyfRwb69Nbq9XFg3vgAAAAAAAAAAIG40vlGpST7TblE+xMEXvtcnezzXsqw8AAAAAAAAAACarLa8RKTfPRRKSD5DARu+JB3wPIYpzDwAAAAAAAAAAJojz7yPiiu6mpKIuk0MJLYNrzQ70jCeOQAAgD8AAIA/mhz+vBQC8LpljPQ7is9dPOy6I7wn+0I9AACAPwAAgD+Nv0c+KUJWvCVXVTpTdU24V0u1vX1jgLkAAIA/AACAP2oYbL6sb8c+0ZyLPoKHPL4FQEU8mO5XPQAAAAAAAAAA4MZCPnPc5T6OmSO+7yBmvhj2Kj1eHEy9AAAAAAAAAACa/R+8VkMIPTs97byONBC+Co/BvT5YET0AAAAAAAAAAAqm375qvy8/03Brviwbsb6Pnpe+YTbMPAAAAAAAAAAAgDigPYuv/z05Jjm+foZivoXokL2T2NG8AAAAAAAAAACgJjK+yP+avI9VSL4Oa9m8NKEGPqr8rD0AAIA/AACAPwBAYDsxU7U/1XGxPslFgT53s4G7gcagvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQl96+/MTbkCUhpRSlIwBbJRNRQGMAXSUR0CjhQatcObzdX2UKGgGaAloD0MINGYS9YICXkCUhpRSlGgVTegDaBZHQKOFk/VRUFV1fZQoaAZoCWgPQwi1M0xtqVZuQJSGlFKUaBVNFgFoFkdAo4WhcmjTKHV9lChoBmgJaA9DCMWu7e0WAG5AlIaUUpRoFU10AWgWR0CjhcyxRl6JdX2UKGgGaAloD0MIeSEdHkJ1ckCUhpRSlGgVTRkBaBZHQKOGFD2rXDp1fZQoaAZoCWgPQwhKXwg5b35xQJSGlFKUaBVL/GgWR0Cjhql5WzWxdX2UKGgGaAloD0MImzqPiv+KbkCUhpRSlGgVTX4BaBZHQKOHv5N47ih1fZQoaAZoCWgPQwiZgcr493NTQJSGlFKUaBVN6ANoFkdAo4fRQpF1CHV9lChoBmgJaA9DCO5brROX1HBAlIaUUpRoFU0hAWgWR0Cjh+HM2WIHdX2UKGgGaAloD0MIWfePhehib0CUhpRSlGgVTRQBaBZHQKOH+TGo73h1fZQoaAZoCWgPQwiI1oo2h05xQJSGlFKUaBVNIQFoFkdAo4hDEBKcu3V9lChoBmgJaA9DCB40u+5t+3BAlIaUUpRoFU1QAWgWR0CjiMI/7iyZdX2UKGgGaAloD0MI7ZqQ1pjqcUCUhpRSlGgVTQ0BaBZHQKOI0hXbM5h1fZQoaAZoCWgPQwhVaYtrPKdxQJSGlFKUaBVNCwFoFkdAo4kPCVKPGXV9lChoBmgJaA9DCPTDCOGRhnBAlIaUUpRoFU0hAWgWR0CjichpQDV6dX2UKGgGaAloD0MIJnMs7yqJbECUhpRSlGgVTQcBaBZHQKOJ2vdM0xd1fZQoaAZoCWgPQwiwAny3+X5yQJSGlFKUaBVNKQFoFkdAo4nwUzsQd3V9lChoBmgJaA9DCOSfGcSHe3JAlIaUUpRoFU0aAWgWR0CjilcS5AhTdX2UKGgGaAloD0MIVft0PCZtcECUhpRSlGgVTSgBaBZHQKOKZLns9jh1fZQoaAZoCWgPQwgXuaerO9RtQJSGlFKUaBVNHAFoFkdAo4qeuDBdlnV9lChoBmgJaA9DCKgZUkVxgXFAlIaUUpRoFU0uAWgWR0Cji3Bf0EowdX2UKGgGaAloD0MI4pANpEtfcUCUhpRSlGgVS/poFkdAo4uB9JBgNXV9lChoBmgJaA9DCKqB5nPu0nBAlIaUUpRoFU0eAWgWR0CjjBzwMH8kdX2UKGgGaAloD0MIkSkfgirFbUCUhpRSlGgVTTMBaBZHQKOMhHZsbed1fZQoaAZoCWgPQwhhinJpvIpyQJSGlFKUaBVL+2gWR0CjjJTLOiWWdX2UKGgGaAloD0MIBg5o6UqocECUhpRSlGgVTSMBaBZHQKOMrbRnezl1fZQoaAZoCWgPQwjLMO4GUR1wQJSGlFKUaBVNOwFoFkdAo4y7544ZM3V9lChoBmgJaA9DCC7kEdxITW9AlIaUUpRoFU0bAWgWR0CjjRmY8dPtdX2UKGgGaAloD0MIg/jAjr+zcECUhpRSlGgVTSUBaBZHQKONfI+W4Vh1fZQoaAZoCWgPQwjfb7TjBkZtQJSGlFKUaBVNDwNoFkdAo43jCzkZJnV9lChoBmgJaA9DCMa+ZOMBAHJAlIaUUpRoFUv9aBZHQKOOHl3hXKd1fZQoaAZoCWgPQwipFDsah0xxQJSGlFKUaBVNJwFoFkdAo45AdQwbl3V9lChoBmgJaA9DCDze5Lco33FAlIaUUpRoFU0uAWgWR0Cjjkq4x1xLdX2UKGgGaAloD0MI71hskwoEcECUhpRSlGgVTRgBaBZHQKOOwBV+7UZ1fZQoaAZoCWgPQwjl8bT8AE9xQJSGlFKUaBVNWQFoFkdAo478/jbSJHV9lChoBmgJaA9DCG4ZcJYS6G5AlIaUUpRoFU09AWgWR0CjjwkYoAn2dX2UKGgGaAloD0MIUwPN55zccUCUhpRSlGgVTRIBaBZHQKOPaekHlfZ1fZQoaAZoCWgPQwgST3YzI3RxQJSGlFKUaBVNIAFoFkdAo4+LiEQGwHV9lChoBmgJaA9DCOymlNdK/2tAlIaUUpRoFU0GAWgWR0CjkDtmL9/CdX2UKGgGaAloD0MId9hEZq66ckCUhpRSlGgVTR0BaBZHQKOQaXIEKVp1fZQoaAZoCWgPQwhv2LYoM4ZtQJSGlFKUaBVNHgFoFkdAo5Ch4yGi6HV9lChoBmgJaA9DCAqGcw2zzXJAlIaUUpRoFU0oAWgWR0CjkKHFPznSdX2UKGgGaAloD0MIHeT1YBJUcUCUhpRSlGgVTVIBaBZHQKOQy95hScd1fZQoaAZoCWgPQwjIz0au2ydyQJSGlFKUaBVNJwFoFkdAo5F1sSCe3HV9lChoBmgJaA9DCDTz5JpCi3NAlIaUUpRoFU0TAWgWR0CjkY0Hpr1vdX2UKGgGaAloD0MItB6+TJSKcECUhpRSlGgVTQsBaBZHQKOdz2ZiNKh1fZQoaAZoCWgPQwi/Khcqf7RtQJSGlFKUaBVNFAFoFkdAo54SDh99dHV9lChoBmgJaA9DCNNp3Qa1GW5AlIaUUpRoFU0LAWgWR0CjnoANG3F2dX2UKGgGaAloD0MI/dtlv26+b0CUhpRSlGgVTTABaBZHQKOeiDB/I811fZQoaAZoCWgPQwgZr3lV589uQJSGlFKUaBVNkgFoFkdAo57ERjBl+XV9lChoBmgJaA9DCIZzDTP02nBAlIaUUpRoFUv7aBZHQKOe+xWT5ft1fZQoaAZoCWgPQwhA3NWryNBuQJSGlFKUaBVNHwFoFkdAo58E1TBInXV9lChoBmgJaA9DCII2OXxS/WpAlIaUUpRoFU0fAWgWR0Cjn4kh7mdRdX2UKGgGaAloD0MIgJ4GDFIocUCUhpRSlGgVTVQBaBZHQKOfoaya/h51fZQoaAZoCWgPQwgEWrqCbf1yQJSGlFKUaBVNGAFoFkdAo6BL+zdDY3V9lChoBmgJaA9DCOD0Lt6PomxAlIaUUpRoFU0bAWgWR0CjoJl1B+nZdX2UKGgGaAloD0MI2jo42BtkbUCUhpRSlGgVTSUBaBZHQKOg+u9vjwR1fZQoaAZoCWgPQwjQCgxZXWtwQJSGlFKUaBVNVAFoFkdAo6ETcfvF33V9lChoBmgJaA9DCH7ja89sIHBAlIaUUpRoFU1AAWgWR0CjoTCYkVvddX2UKGgGaAloD0MIAz+qYX/OcECUhpRSlGgVTRIBaBZHQKOhbaKUFB91fZQoaAZoCWgPQwhsPxnjQxpuQJSGlFKUaBVNGAFoFkdAo6GZzNliB3V9lChoBmgJaA9DCJLoZRSLlXBAlIaUUpRoFU0eAWgWR0Cjoc557gKndX2UKGgGaAloD0MI492RsRq/cECUhpRSlGgVTRwBaBZHQKOiDSYPXkJ1fZQoaAZoCWgPQwigi4aMx4dxQJSGlFKUaBVNAQFoFkdAo6ITDZUT+XV9lChoBmgJaA9DCFLy6hwDd3FAlIaUUpRoFU0VAWgWR0Cjolv/R3NcdX2UKGgGaAloD0MIWmWmtP6Rb0CUhpRSlGgVTQoBaBZHQKOicN6w+t91fZQoaAZoCWgPQwgIy9jQzUtwQJSGlFKUaBVNMwFoFkdAo6M2ZqmCRXV9lChoBmgJaA9DCKEt51Jcem9AlIaUUpRoFU1DAWgWR0Cjo3vhybQUdX2UKGgGaAloD0MIvcKC+0HQckCUhpRSlGgVTR8BaBZHQKOjkVVPva11fZQoaAZoCWgPQwhUH0jeefhxQJSGlFKUaBVNIwFoFkdAo6O1vddmhHV9lChoBmgJaA9DCFclkX0Qr25AlIaUUpRoFUv3aBZHQKOkB1klNUR1fZQoaAZoCWgPQwic4QZ8fn9wQJSGlFKUaBVNEgFoFkdAo6QilBQem3V9lChoBmgJaA9DCBHEeThBbnJAlIaUUpRoFU0PAWgWR0CjpKCz1K5DdX2UKGgGaAloD0MIq+gPzTySbkCUhpRSlGgVTQcBaBZHQKOk7SgoPTZ1fZQoaAZoCWgPQwhJSnoY2tNtQJSGlFKUaBVNMwFoFkdAo6U+7xusLnV9lChoBmgJaA9DCDUlWYcjKHFAlIaUUpRoFU0cAWgWR0CjpW58BuGcdX2UKGgGaAloD0MIFM5uLVMHckCUhpRSlGgVTQIBaBZHQKOliMyad+Z1fZQoaAZoCWgPQwh2iH/YknJxQJSGlFKUaBVNQAFoFkdAo6WQV0tAcHV9lChoBmgJaA9DCLmOccVF0HBAlIaUUpRoFU0EAWgWR0CjpdgRTS9edX2UKGgGaAloD0MILQsm/ihtcECUhpRSlGgVTQ8BaBZHQKOmEtCiRGN1fZQoaAZoCWgPQwjecvVj0x5yQJSGlFKUaBVNUgFoFkdAo6ZZ1Tzd13V9lChoBmgJaA9DCLUbfczH33FAlIaUUpRoFU1aAWgWR0Cjpq3kPtladX2UKGgGaAloD0MIduJyvAJVcUCUhpRSlGgVTR8BaBZHQKOnFnNgSe11fZQoaAZoCWgPQwiBlUOL7N9uQJSGlFKUaBVNKgFoFkdAo6eL0voNeHV9lChoBmgJaA9DCDeMguCx2HBAlIaUUpRoFU0bAWgWR0Cjp5c8cMmXdX2UKGgGaAloD0MIajANw0dmcECUhpRSlGgVTSkBaBZHQKOnoG21D0F1fZQoaAZoCWgPQwgvh913DJtxQJSGlFKUaBVNMAFoFkdAo6gy2F36h3V9lChoBmgJaA9DCEtzK4SV/3BAlIaUUpRoFU07AWgWR0CjqHpXQtz0dX2UKGgGaAloD0MIxw+VRoy3ckCUhpRSlGgVTSUBaBZHQKOos/Efkmx1fZQoaAZoCWgPQwgh5Lz/D7NwQJSGlFKUaBVNFAFoFkdAo6jDRD1GsnV9lChoBmgJaA9DCGMNF7kn+nJAlIaUUpRoFUvyaBZHQKOo3kbxVhl1fZQoaAZoCWgPQwhNh07Pu3RvQJSGlFKUaBVNFAFoFkdAo6k0J8fFJnV9lChoBmgJaA9DCL0eTIqPDG5AlIaUUpRoFU0sAWgWR0CjqV7EgntwdX2UKGgGaAloD0MIryR5rq+scECUhpRSlGgVTQABaBZHQKOpox1PnCB1fZQoaAZoCWgPQwj4iQPod8dwQJSGlFKUaBVNKQFoFkdAo6n8HyEtd3V9lChoBmgJaA9DCKoKDcSySG9AlIaUUpRoFU0JAWgWR0Cjqg84YJmedX2UKGgGaAloD0MIjKAxk+hmcUCUhpRSlGgVTYEBaBZHQKOq2plz2ex1fZQoaAZoCWgPQwj0qPi/4x5yQJSGlFKUaBVNQwFoFkdAo6s4WgvlEXV9lChoBmgJaA9DCEtzK4RV/nFAlIaUUpRoFU0mAWgWR0Cjq7qT0QK8dX2UKGgGaAloD0MIGCE82jhBcUCUhpRSlGgVS/NoFkdAo6wEo6S1V3VlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 620,
80
+ "n_steps": 1024,
81
+ "gamma": 0.9995,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2-3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2beb33e4404534f2a156974d0d0a5364619dba14afec73579ca74d44d144ade
3
+ size 87929
ppo-LunarLander-v2-3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88efe47fc47c59a74439c759bb4ddf252c04a7fe3789ed48e022a277021152d6
3
+ size 43393
ppo-LunarLander-v2-3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (190 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 258.9745007117843, "std_reward": 20.105793002511362, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T14:27:19.810706"}