NikitaErmolaev
commited on
Commit
·
a21fca0
1
Parent(s):
91b9730
Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1747.28 +/- 433.05
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b7f4cd7efd13c664ed67823dd6e2c4203d353ec015a42c81eee8e14a1bc7e1e
|
3 |
+
size 129189
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3bdbaa2710>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3bdbaa27a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3bdbaa2830>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3bdbaa28c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3bdbaa2950>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3bdbaa29e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3bdbaa2a70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3bdbaa2b00>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3bdbaa2b90>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3bdbaa2c20>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3bdbaa2cb0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3bdbae5db0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1658666707.2084956,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAATycHvqQXqD2tNQM/NQcNPz/Xl7/KYA4+0DmZvjgaCr4URRA/5PI8v6I5SL9LCOU8OnScvvwUzT4cP78+XDzEP167sD+l4ym+frrvPpdWB78qNUO/hTXOPSVRnz5+3Uo/MOicvyNaAj8e7QzA1VNLP0QoNb9HROa/Ie3FwPQAUb/sxXDAT4lHP40hi78UDlU/EjslwAfnFrwghUW/fjhQPZQIfj7VApy/RE4NP/UkCrtY7Xi9PELGv4yagr9vpvY9zsovQLPOgrtzgEi/e/tpvEzWUD8jWgI/z4ToPqMoob9o0ZU/n59Jvif8/D41rhC/v5uxPnc7S8Cqmts+G9TQPxB8I7/HyQLAl1PhPs75Lj68uqK+uXFpwElaPMDmHTE/Dr+EvozxTr+09B7Ar00Bv5jKQr+B2qc9MO8Xv3hPTMAw6Jy/I1oCPx7tDMCjKKG/PjIBvzikgj2hVgM/frGoP0EcXT9fTKe/TKgDvtPDBD2DzoQ+d0O/vzTaEL96TJc/JDQeP56eob17ywA/7l4YPj7voD/y9yy/pgOYPXz2KsDbQEG/LwKlPKOhxr1NslC/MOicvyNaAj8e7QzA1VNLP5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAMnvmjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICg0py9AAAAAGPu7r8AAAAApY6XvQAAAAB56QBAAAAAANUzm70AAAAAi/7nPwAAAAAlCQK+AAAAAN7R2L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIZ681AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARFnzOwAAAACZCvK/AAAAADNsCD4AAAAA8EzoPwAAAAAa6+m9AAAAALXb/T8AAAAAbzs4vQAAAACxhPa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNBONQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKBkcjwAAAAAWdjlvwAAAACpsZ09AAAAALvK+T8AAAAACk0XvQAAAAA1BeM/AAAAANOF6rsAAAAAGr3cvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADaCILYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICa1YK9AAAAAOiH9r8AAAAAt9jkuwAAAABa0/4/AAAAAPwhSr0AAAAAryLiPwAAAAAU0dw9AAAAAMxP9b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJnFG606YE6MAWyUTegDjAF0lEdAqRDOHDaXbHV9lChoBkdAmK1zINmUW2gHTegDaAhHQKkU9yimEXd1fZQoaAZHQJt0u/L1VYJoB03oA2gIR0CpF/qlHjIadX2UKGgGR0CYppjYI0IkaAdN6ANoCEdAqRjVIK+i8HV9lChoBkdAmxkUVJtix2gHTegDaAhHQKkdq3XqZ+h1fZQoaAZHQJQPackMTexoB03oA2gIR0CpIdTcZccEdX2UKGgGR0CNmpgEU0vXaAdN6ANoCEdAqSTmY8dPtXV9lChoBkdAkMq8HbAUL2gHTegDaAhHQKklx0HQhOh1fZQoaAZHQJgzICgbp/xoB03oA2gIR0CpKq2rXDm9dX2UKGgGR0CTFBwHJLdvaAdN6ANoCEdAqS7n5vcafnV9lChoBkdAkLwUyDZlF2gHTegDaAhHQKkx5sXzlLh1fZQoaAZHQIo20tNBWxRoB03oA2gIR0CpMtRS5y2hdX2UKGgGR0CT4YFqBVdYaAdN6ANoCEdAqTfEt/WlM3V9lChoBkdAlRa/nGKhtmgHTegDaAhHQKk73stTUAl1fZQoaAZHQJpPpepn6EdoB03oA2gIR0CpPudN34bkdX2UKGgGR0CaAznYg7o0aAdN6ANoCEdAqT/E8ifQKXV9lChoBkdAnBh4cBEKE2gHTegDaAhHQKlEoTxG2Cx1fZQoaAZHQJ0BzTUiILxoB03oA2gIR0CpSM5H3DekdX2UKGgGR0CZ7w0IToMbaAdN6ANoCEdAqUvJdld1MnV9lChoBkdAmh1faYeDF2gHTegDaAhHQKlMp4AS39d1fZQoaAZHQJoXryvs7dVoB03oA2gIR0CpUYdj5KvndX2UKGgGR0CZnM8xsVL0aAdN6ANoCEdAqVW1pPAO8XV9lChoBkdAmhvvustCiWgHTegDaAhHQKlYtwCKaXt1fZQoaAZHQJmGy55JK8NoB03oA2gIR0CpWZgwXZXddX2UKGgGR0CZ9SREF4cFaAdN6ANoCEdAqV6KWE9MbnV9lChoBkdAmKfEc81XNmgHTegDaAhHQKliwJ8fFJh1fZQoaAZHQJf6czWPLgZoB03oA2gIR0CpZc5J04ipdX2UKGgGR0CexTHVwxWUaAdN6ANoCEdAqWapiCrcTXV9lChoBkdAncTeHvc8DGgHTegDaAhHQKlrbTwUg0V1fZQoaAZHQJvWFN/OMVFoB03oA2gIR0Cpb56+FlCkdX2UKGgGR0CaoWKLbYbsaAdN6ANoCEdAqXKqlUIcBHV9lChoBkdAmNqBVhkRSWgHTegDaAhHQKlzj850bLl1fZQoaAZHQJvwQyk9ECxoB03oA2gIR0CpeHitq59WdX2UKGgGR0CcfTxRVIZqaAdN6ANoCEdAqXyRXGOuJXV9lChoBkdAmpVYj4YaYWgHTegDaAhHQKl/h3GGVRl1fZQoaAZHQJ1RliSaEzxoB03oA2gIR0CpgGji4rjHdX2UKGgGR0CaPR8Hv+fiaAdN6ANoCEdAqYVNj/dZaHV9lChoBkdAm+6VHvttymgHTegDaAhHQKmJhsiSq2l1fZQoaAZHQJ0IEzguRLdoB03oA2gIR0CpjJxDTjNqdX2UKGgGR0ByttaMaS9vaAdN6ANoCEdAqY2CV2Rq5HV9lChoBkdAnD2/6j323GgHTegDaAhHQKmSX3t8eCF1fZQoaAZHQJkl27VawEBoB03oA2gIR0CplokiUxEfdX2UKGgGR0CdUj24uscRaAdN6ANoCEdAqZl+WD6Fd3V9lChoBkdAnGlO4PPLPmgHTegDaAhHQKmaVexfOUt1fZQoaAZHQJon0tVaOghoB03oA2gIR0Cpnxs+3YthdX2UKGgGR0Cbwv1y/9HdaAdN6ANoCEdAqaNC6FuejHV9lChoBkdAnM4mB8QZoGgHTegDaAhHQKmmOGxD9fl1fZQoaAZHQJsqGx8lXzVoB03oA2gIR0Cppxk1Mue0dX2UKGgGR0Cd6tmnO0LMaAdN6ANoCEdAqav/qAz55HV9lChoBkdAm9EHRgJC0GgHTegDaAhHQKmwHObAk9l1fZQoaAZHQJ95SEqUeMhoB03oA2gIR0CpsxDzAeq8dX2UKGgGR0CdBXknCwbEaAdN6ANoCEdAqbPvOt4iYHV9lChoBkdAmOoyf16E8WgHTegDaAhHQKm4zDD0lJJ1fZQoaAZHQJfbF2JSBLBoB03oA2gIR0CpvOhdUsFudX2UKGgGR0CbMyDxsl9jaAdN6ANoCEdAqb/ac0+C9XV9lChoBkdAmD/V6AvtdGgHTegDaAhHQKnAtEjPfKp1fZQoaAZHQJsuONCJGfBoB03oA2gIR0CpxaIS+QEIdX2UKGgGR0CcbrrYGt6paAdN6ANoCEdAqcnkKE3843V9lChoBkdAmEINoN/e+GgHTegDaAhHQKnM5MXaakR1fZQoaAZHQJiWM4p+c6NoB03oA2gIR0Cpzci4rjHXdX2UKGgGR0CZAr863iJgaAdN6ANoCEdAqdKepwS8J3V9lChoBkdAm2UAF1SwW2gHTegDaAhHQKnW8oR7JGR1fZQoaAZHQJsi1/9YOlRoB03oA2gIR0Cp2esXaakRdX2UKGgGR0CYdMW7OE/TaAdN6ANoCEdAqdrNeSjgynV9lChoBkdAm42dwBHTZ2gHTegDaAhHQKnfo3Ov+wV1fZQoaAZHQJ3RtMVUModoB03oA2gIR0Cp48DjzZpSdX2UKGgGR0CeDu8ejmCAaAdN6ANoCEdAqebInQY1pHV9lChoBkdAnhHDi0fHP2gHTegDaAhHQKnnrBuXNTt1fZQoaAZHQJ3jBOvdM0xoB03oA2gIR0Cp7I42bXpXdX2UKGgGR0Cc01MQ2/BWaAdN6ANoCEdAqfC7CSA6MnV9lChoBkdAnqYNdAxBV2gHTegDaAhHQKnztpAUtZp1fZQoaAZHQJ1s4MI/qxFoB03oA2gIR0Cp9JvJaJQ+dX2UKGgGR0CdKFx0uDjBaAdN6ANoCEdAqflh5NXYDnV9lChoBkdAmJ0cn7YTTWgHTegDaAhHQKn9iiDdxhl1fZQoaAZHQJxsQQsf7rNoB03oA2gIR0CqAIemm+CcdX2UKGgGR0CdTHc4HX2/aAdN6ANoCEdAqgFmVRk3CXV9lChoBkdAmluNLpRoAWgHTegDaAhHQKoGOP2f0291fZQoaAZHQJzFb1xsEaFoB03oA2gIR0CqClzUI9kjdX2UKGgGR0CdUrdXDFZQaAdN6ANoCEdAqg1JDE3sHHV9lChoBkdAnj2msvIwNGgHTegDaAhHQKoOKH+Idlx1fZQoaAZHQJx8Sjh1klNoB03oA2gIR0CqEwHsTnJUdX2UKGgGR0Cd2B95yEL6aAdN6ANoCEdAqhcXTodMkHV9lChoBkdAnQhDcIqsl2gHTegDaAhHQKoaB2exwAF1fZQoaAZHQJrca28Zk09oB03oA2gIR0CqGuxH5JsgdX2UKGgGR0CeB9ysjmjkaAdN6ANoCEdAqh+t2zOX3XV9lChoBkdAnGuvGVAzHmgHTegDaAhHQKoj0URnOB11fZQoaAZHQJ5E5BqsU7FoB03oA2gIR0CqJtJUHY6GdX2UKGgGR0Cd7St9x6v8aAdN6ANoCEdAqier9n9NvnV9lChoBkdAnxustXgccWgHTegDaAhHQKosdcAzYVZ1fZQoaAZHQJy1ogbIcR1oB03oA2gIR0CqMJ1hTfixdX2UKGgGR0CaG0r1dxACaAdN6ANoCEdAqjOY6r/823V9lChoBkdAnpLu6I3zc2gHTegDaAhHQKo0d6KtPpJ1fZQoaAZHQJ1pK4H5aeRoB03oA2gIR0CqOU0th/iHdX2UKGgGR0CepFaNuLrHaAdN6ANoCEdAqj1qhQFcIXV9lChoBkdAmQL4Rh+fAmgHTegDaAhHQKpAaf/3nIR1fZQoaAZHQJ3rGlImPYFoB03oA2gIR0CqQUoOpbUxdX2UKGgGR0CckWLxqfvnaAdN6ANoCEdAqkYpEUj9oHV9lChoBkdAemANWEK3NWgHTegDaAhHQKpKXVWCEpR1fZQoaAZHQJ0F8rrgOz9oB03oA2gIR0CqTW+nZTQ3dX2UKGgGR0CdD9SYw7DEaAdN6ANoCEdAqk5RMJx//nVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdacd36101a58f4129c00f813cf13666fcf94babf4320d418fa54821a016ee92
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6257f82c76b49dc3bacd6807327264fb11dd442972feed44540839f46492c89e
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3bdbaa2710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3bdbaa27a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3bdbaa2830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3bdbaa28c0>", "_build": "<function ActorCriticPolicy._build at 0x7f3bdbaa2950>", "forward": "<function ActorCriticPolicy.forward at 0x7f3bdbaa29e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3bdbaa2a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3bdbaa2b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3bdbaa2b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3bdbaa2c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3bdbaa2cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3bdbae5db0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658666707.2084956, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAATycHvqQXqD2tNQM/NQcNPz/Xl7/KYA4+0DmZvjgaCr4URRA/5PI8v6I5SL9LCOU8OnScvvwUzT4cP78+XDzEP167sD+l4ym+frrvPpdWB78qNUO/hTXOPSVRnz5+3Uo/MOicvyNaAj8e7QzA1VNLP0QoNb9HROa/Ie3FwPQAUb/sxXDAT4lHP40hi78UDlU/EjslwAfnFrwghUW/fjhQPZQIfj7VApy/RE4NP/UkCrtY7Xi9PELGv4yagr9vpvY9zsovQLPOgrtzgEi/e/tpvEzWUD8jWgI/z4ToPqMoob9o0ZU/n59Jvif8/D41rhC/v5uxPnc7S8Cqmts+G9TQPxB8I7/HyQLAl1PhPs75Lj68uqK+uXFpwElaPMDmHTE/Dr+EvozxTr+09B7Ar00Bv5jKQr+B2qc9MO8Xv3hPTMAw6Jy/I1oCPx7tDMCjKKG/PjIBvzikgj2hVgM/frGoP0EcXT9fTKe/TKgDvtPDBD2DzoQ+d0O/vzTaEL96TJc/JDQeP56eob17ywA/7l4YPj7voD/y9yy/pgOYPXz2KsDbQEG/LwKlPKOhxr1NslC/MOicvyNaAj8e7QzA1VNLP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAMnvmjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICg0py9AAAAAGPu7r8AAAAApY6XvQAAAAB56QBAAAAAANUzm70AAAAAi/7nPwAAAAAlCQK+AAAAAN7R2L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIZ681AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARFnzOwAAAACZCvK/AAAAADNsCD4AAAAA8EzoPwAAAAAa6+m9AAAAALXb/T8AAAAAbzs4vQAAAACxhPa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNBONQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKBkcjwAAAAAWdjlvwAAAACpsZ09AAAAALvK+T8AAAAACk0XvQAAAAA1BeM/AAAAANOF6rsAAAAAGr3cvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADaCILYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICa1YK9AAAAAOiH9r8AAAAAt9jkuwAAAABa0/4/AAAAAPwhSr0AAAAAryLiPwAAAAAU0dw9AAAAAMxP9b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJnFG606YE6MAWyUTegDjAF0lEdAqRDOHDaXbHV9lChoBkdAmK1zINmUW2gHTegDaAhHQKkU9yimEXd1fZQoaAZHQJt0u/L1VYJoB03oA2gIR0CpF/qlHjIadX2UKGgGR0CYppjYI0IkaAdN6ANoCEdAqRjVIK+i8HV9lChoBkdAmxkUVJtix2gHTegDaAhHQKkdq3XqZ+h1fZQoaAZHQJQPackMTexoB03oA2gIR0CpIdTcZccEdX2UKGgGR0CNmpgEU0vXaAdN6ANoCEdAqSTmY8dPtXV9lChoBkdAkMq8HbAUL2gHTegDaAhHQKklx0HQhOh1fZQoaAZHQJgzICgbp/xoB03oA2gIR0CpKq2rXDm9dX2UKGgGR0CTFBwHJLdvaAdN6ANoCEdAqS7n5vcafnV9lChoBkdAkLwUyDZlF2gHTegDaAhHQKkx5sXzlLh1fZQoaAZHQIo20tNBWxRoB03oA2gIR0CpMtRS5y2hdX2UKGgGR0CT4YFqBVdYaAdN6ANoCEdAqTfEt/WlM3V9lChoBkdAlRa/nGKhtmgHTegDaAhHQKk73stTUAl1fZQoaAZHQJpPpepn6EdoB03oA2gIR0CpPudN34bkdX2UKGgGR0CaAznYg7o0aAdN6ANoCEdAqT/E8ifQKXV9lChoBkdAnBh4cBEKE2gHTegDaAhHQKlEoTxG2Cx1fZQoaAZHQJ0BzTUiILxoB03oA2gIR0CpSM5H3DekdX2UKGgGR0CZ7w0IToMbaAdN6ANoCEdAqUvJdld1MnV9lChoBkdAmh1faYeDF2gHTegDaAhHQKlMp4AS39d1fZQoaAZHQJoXryvs7dVoB03oA2gIR0CpUYdj5KvndX2UKGgGR0CZnM8xsVL0aAdN6ANoCEdAqVW1pPAO8XV9lChoBkdAmhvvustCiWgHTegDaAhHQKlYtwCKaXt1fZQoaAZHQJmGy55JK8NoB03oA2gIR0CpWZgwXZXddX2UKGgGR0CZ9SREF4cFaAdN6ANoCEdAqV6KWE9MbnV9lChoBkdAmKfEc81XNmgHTegDaAhHQKliwJ8fFJh1fZQoaAZHQJf6czWPLgZoB03oA2gIR0CpZc5J04ipdX2UKGgGR0CexTHVwxWUaAdN6ANoCEdAqWapiCrcTXV9lChoBkdAncTeHvc8DGgHTegDaAhHQKlrbTwUg0V1fZQoaAZHQJvWFN/OMVFoB03oA2gIR0Cpb56+FlCkdX2UKGgGR0CaoWKLbYbsaAdN6ANoCEdAqXKqlUIcBHV9lChoBkdAmNqBVhkRSWgHTegDaAhHQKlzj850bLl1fZQoaAZHQJvwQyk9ECxoB03oA2gIR0CpeHitq59WdX2UKGgGR0CcfTxRVIZqaAdN6ANoCEdAqXyRXGOuJXV9lChoBkdAmpVYj4YaYWgHTegDaAhHQKl/h3GGVRl1fZQoaAZHQJ1RliSaEzxoB03oA2gIR0CpgGji4rjHdX2UKGgGR0CaPR8Hv+fiaAdN6ANoCEdAqYVNj/dZaHV9lChoBkdAm+6VHvttymgHTegDaAhHQKmJhsiSq2l1fZQoaAZHQJ0IEzguRLdoB03oA2gIR0CpjJxDTjNqdX2UKGgGR0ByttaMaS9vaAdN6ANoCEdAqY2CV2Rq5HV9lChoBkdAnD2/6j323GgHTegDaAhHQKmSX3t8eCF1fZQoaAZHQJkl27VawEBoB03oA2gIR0CplokiUxEfdX2UKGgGR0CdUj24uscRaAdN6ANoCEdAqZl+WD6Fd3V9lChoBkdAnGlO4PPLPmgHTegDaAhHQKmaVexfOUt1fZQoaAZHQJon0tVaOghoB03oA2gIR0Cpnxs+3YthdX2UKGgGR0Cbwv1y/9HdaAdN6ANoCEdAqaNC6FuejHV9lChoBkdAnM4mB8QZoGgHTegDaAhHQKmmOGxD9fl1fZQoaAZHQJsqGx8lXzVoB03oA2gIR0Cppxk1Mue0dX2UKGgGR0Cd6tmnO0LMaAdN6ANoCEdAqav/qAz55HV9lChoBkdAm9EHRgJC0GgHTegDaAhHQKmwHObAk9l1fZQoaAZHQJ95SEqUeMhoB03oA2gIR0CpsxDzAeq8dX2UKGgGR0CdBXknCwbEaAdN6ANoCEdAqbPvOt4iYHV9lChoBkdAmOoyf16E8WgHTegDaAhHQKm4zDD0lJJ1fZQoaAZHQJfbF2JSBLBoB03oA2gIR0CpvOhdUsFudX2UKGgGR0CbMyDxsl9jaAdN6ANoCEdAqb/ac0+C9XV9lChoBkdAmD/V6AvtdGgHTegDaAhHQKnAtEjPfKp1fZQoaAZHQJsuONCJGfBoB03oA2gIR0CpxaIS+QEIdX2UKGgGR0CcbrrYGt6paAdN6ANoCEdAqcnkKE3843V9lChoBkdAmEINoN/e+GgHTegDaAhHQKnM5MXaakR1fZQoaAZHQJiWM4p+c6NoB03oA2gIR0Cpzci4rjHXdX2UKGgGR0CZAr863iJgaAdN6ANoCEdAqdKepwS8J3V9lChoBkdAm2UAF1SwW2gHTegDaAhHQKnW8oR7JGR1fZQoaAZHQJsi1/9YOlRoB03oA2gIR0Cp2esXaakRdX2UKGgGR0CYdMW7OE/TaAdN6ANoCEdAqdrNeSjgynV9lChoBkdAm42dwBHTZ2gHTegDaAhHQKnfo3Ov+wV1fZQoaAZHQJ3RtMVUModoB03oA2gIR0Cp48DjzZpSdX2UKGgGR0CeDu8ejmCAaAdN6ANoCEdAqebInQY1pHV9lChoBkdAnhHDi0fHP2gHTegDaAhHQKnnrBuXNTt1fZQoaAZHQJ3jBOvdM0xoB03oA2gIR0Cp7I42bXpXdX2UKGgGR0Cc01MQ2/BWaAdN6ANoCEdAqfC7CSA6MnV9lChoBkdAnqYNdAxBV2gHTegDaAhHQKnztpAUtZp1fZQoaAZHQJ1s4MI/qxFoB03oA2gIR0Cp9JvJaJQ+dX2UKGgGR0CdKFx0uDjBaAdN6ANoCEdAqflh5NXYDnV9lChoBkdAmJ0cn7YTTWgHTegDaAhHQKn9iiDdxhl1fZQoaAZHQJxsQQsf7rNoB03oA2gIR0CqAIemm+CcdX2UKGgGR0CdTHc4HX2/aAdN6ANoCEdAqgFmVRk3CXV9lChoBkdAmluNLpRoAWgHTegDaAhHQKoGOP2f0291fZQoaAZHQJzFb1xsEaFoB03oA2gIR0CqClzUI9kjdX2UKGgGR0CdUrdXDFZQaAdN6ANoCEdAqg1JDE3sHHV9lChoBkdAnj2msvIwNGgHTegDaAhHQKoOKH+Idlx1fZQoaAZHQJx8Sjh1klNoB03oA2gIR0CqEwHsTnJUdX2UKGgGR0Cd2B95yEL6aAdN6ANoCEdAqhcXTodMkHV9lChoBkdAnQhDcIqsl2gHTegDaAhHQKoaB2exwAF1fZQoaAZHQJrca28Zk09oB03oA2gIR0CqGuxH5JsgdX2UKGgGR0CeB9ysjmjkaAdN6ANoCEdAqh+t2zOX3XV9lChoBkdAnGuvGVAzHmgHTegDaAhHQKoj0URnOB11fZQoaAZHQJ5E5BqsU7FoB03oA2gIR0CqJtJUHY6GdX2UKGgGR0Cd7St9x6v8aAdN6ANoCEdAqier9n9NvnV9lChoBkdAnxustXgccWgHTegDaAhHQKosdcAzYVZ1fZQoaAZHQJy1ogbIcR1oB03oA2gIR0CqMJ1hTfixdX2UKGgGR0CaG0r1dxACaAdN6ANoCEdAqjOY6r/823V9lChoBkdAnpLu6I3zc2gHTegDaAhHQKo0d6KtPpJ1fZQoaAZHQJ1pK4H5aeRoB03oA2gIR0CqOU0th/iHdX2UKGgGR0CepFaNuLrHaAdN6ANoCEdAqj1qhQFcIXV9lChoBkdAmQL4Rh+fAmgHTegDaAhHQKpAaf/3nIR1fZQoaAZHQJ3rGlImPYFoB03oA2gIR0CqQUoOpbUxdX2UKGgGR0CckWLxqfvnaAdN6ANoCEdAqkYpEUj9oHV9lChoBkdAemANWEK3NWgHTegDaAhHQKpKXVWCEpR1fZQoaAZHQJ0F8rrgOz9oB03oA2gIR0CqTW+nZTQ3dX2UKGgGR0CdD9SYw7DEaAdN6ANoCEdAqk5RMJx//nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d2445b65be0cb49798cbf2853b987db695aec9196d99439ad62ad4bad99484b
|
3 |
+
size 1085716
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1747.2763347183995, "std_reward": 433.04910311371935, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-24T13:50:05.017845"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:076436f5557bfe94dd865e5d0816802d8dd0bc4cf7079fb8d6385d53180e5d12
|
3 |
+
size 2763
|