NikitaErmolaev commited on
Commit
a21fca0
·
1 Parent(s): 91b9730

Initial commit

Browse files
.gitattributes CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
32
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 1747.28 +/- 433.05
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: AntBulletEnv-v0
20
+ type: AntBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **AntBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b7f4cd7efd13c664ed67823dd6e2c4203d353ec015a42c81eee8e14a1bc7e1e
3
+ size 129189
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3bdbaa2710>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3bdbaa27a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3bdbaa2830>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3bdbaa28c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3bdbaa2950>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3bdbaa29e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3bdbaa2a70>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3bdbaa2b00>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3bdbaa2b90>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3bdbaa2c20>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3bdbaa2cb0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f3bdbae5db0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1658666707.2084956,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAATycHvqQXqD2tNQM/NQcNPz/Xl7/KYA4+0DmZvjgaCr4URRA/5PI8v6I5SL9LCOU8OnScvvwUzT4cP78+XDzEP167sD+l4ym+frrvPpdWB78qNUO/hTXOPSVRnz5+3Uo/MOicvyNaAj8e7QzA1VNLP0QoNb9HROa/Ie3FwPQAUb/sxXDAT4lHP40hi78UDlU/EjslwAfnFrwghUW/fjhQPZQIfj7VApy/RE4NP/UkCrtY7Xi9PELGv4yagr9vpvY9zsovQLPOgrtzgEi/e/tpvEzWUD8jWgI/z4ToPqMoob9o0ZU/n59Jvif8/D41rhC/v5uxPnc7S8Cqmts+G9TQPxB8I7/HyQLAl1PhPs75Lj68uqK+uXFpwElaPMDmHTE/Dr+EvozxTr+09B7Ar00Bv5jKQr+B2qc9MO8Xv3hPTMAw6Jy/I1oCPx7tDMCjKKG/PjIBvzikgj2hVgM/frGoP0EcXT9fTKe/TKgDvtPDBD2DzoQ+d0O/vzTaEL96TJc/JDQeP56eob17ywA/7l4YPj7voD/y9yy/pgOYPXz2KsDbQEG/LwKlPKOhxr1NslC/MOicvyNaAj8e7QzA1VNLP5R0lGIu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAMnvmjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICg0py9AAAAAGPu7r8AAAAApY6XvQAAAAB56QBAAAAAANUzm70AAAAAi/7nPwAAAAAlCQK+AAAAAN7R2L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIZ681AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARFnzOwAAAACZCvK/AAAAADNsCD4AAAAA8EzoPwAAAAAa6+m9AAAAALXb/T8AAAAAbzs4vQAAAACxhPa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNBONQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKBkcjwAAAAAWdjlvwAAAACpsZ09AAAAALvK+T8AAAAACk0XvQAAAAA1BeM/AAAAANOF6rsAAAAAGr3cvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADaCILYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICa1YK9AAAAAOiH9r8AAAAAt9jkuwAAAABa0/4/AAAAAPwhSr0AAAAAryLiPwAAAAAU0dw9AAAAAMxP9b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJnFG606YE6MAWyUTegDjAF0lEdAqRDOHDaXbHV9lChoBkdAmK1zINmUW2gHTegDaAhHQKkU9yimEXd1fZQoaAZHQJt0u/L1VYJoB03oA2gIR0CpF/qlHjIadX2UKGgGR0CYppjYI0IkaAdN6ANoCEdAqRjVIK+i8HV9lChoBkdAmxkUVJtix2gHTegDaAhHQKkdq3XqZ+h1fZQoaAZHQJQPackMTexoB03oA2gIR0CpIdTcZccEdX2UKGgGR0CNmpgEU0vXaAdN6ANoCEdAqSTmY8dPtXV9lChoBkdAkMq8HbAUL2gHTegDaAhHQKklx0HQhOh1fZQoaAZHQJgzICgbp/xoB03oA2gIR0CpKq2rXDm9dX2UKGgGR0CTFBwHJLdvaAdN6ANoCEdAqS7n5vcafnV9lChoBkdAkLwUyDZlF2gHTegDaAhHQKkx5sXzlLh1fZQoaAZHQIo20tNBWxRoB03oA2gIR0CpMtRS5y2hdX2UKGgGR0CT4YFqBVdYaAdN6ANoCEdAqTfEt/WlM3V9lChoBkdAlRa/nGKhtmgHTegDaAhHQKk73stTUAl1fZQoaAZHQJpPpepn6EdoB03oA2gIR0CpPudN34bkdX2UKGgGR0CaAznYg7o0aAdN6ANoCEdAqT/E8ifQKXV9lChoBkdAnBh4cBEKE2gHTegDaAhHQKlEoTxG2Cx1fZQoaAZHQJ0BzTUiILxoB03oA2gIR0CpSM5H3DekdX2UKGgGR0CZ7w0IToMbaAdN6ANoCEdAqUvJdld1MnV9lChoBkdAmh1faYeDF2gHTegDaAhHQKlMp4AS39d1fZQoaAZHQJoXryvs7dVoB03oA2gIR0CpUYdj5KvndX2UKGgGR0CZnM8xsVL0aAdN6ANoCEdAqVW1pPAO8XV9lChoBkdAmhvvustCiWgHTegDaAhHQKlYtwCKaXt1fZQoaAZHQJmGy55JK8NoB03oA2gIR0CpWZgwXZXddX2UKGgGR0CZ9SREF4cFaAdN6ANoCEdAqV6KWE9MbnV9lChoBkdAmKfEc81XNmgHTegDaAhHQKliwJ8fFJh1fZQoaAZHQJf6czWPLgZoB03oA2gIR0CpZc5J04ipdX2UKGgGR0CexTHVwxWUaAdN6ANoCEdAqWapiCrcTXV9lChoBkdAncTeHvc8DGgHTegDaAhHQKlrbTwUg0V1fZQoaAZHQJvWFN/OMVFoB03oA2gIR0Cpb56+FlCkdX2UKGgGR0CaoWKLbYbsaAdN6ANoCEdAqXKqlUIcBHV9lChoBkdAmNqBVhkRSWgHTegDaAhHQKlzj850bLl1fZQoaAZHQJvwQyk9ECxoB03oA2gIR0CpeHitq59WdX2UKGgGR0CcfTxRVIZqaAdN6ANoCEdAqXyRXGOuJXV9lChoBkdAmpVYj4YaYWgHTegDaAhHQKl/h3GGVRl1fZQoaAZHQJ1RliSaEzxoB03oA2gIR0CpgGji4rjHdX2UKGgGR0CaPR8Hv+fiaAdN6ANoCEdAqYVNj/dZaHV9lChoBkdAm+6VHvttymgHTegDaAhHQKmJhsiSq2l1fZQoaAZHQJ0IEzguRLdoB03oA2gIR0CpjJxDTjNqdX2UKGgGR0ByttaMaS9vaAdN6ANoCEdAqY2CV2Rq5HV9lChoBkdAnD2/6j323GgHTegDaAhHQKmSX3t8eCF1fZQoaAZHQJkl27VawEBoB03oA2gIR0CplokiUxEfdX2UKGgGR0CdUj24uscRaAdN6ANoCEdAqZl+WD6Fd3V9lChoBkdAnGlO4PPLPmgHTegDaAhHQKmaVexfOUt1fZQoaAZHQJon0tVaOghoB03oA2gIR0Cpnxs+3YthdX2UKGgGR0Cbwv1y/9HdaAdN6ANoCEdAqaNC6FuejHV9lChoBkdAnM4mB8QZoGgHTegDaAhHQKmmOGxD9fl1fZQoaAZHQJsqGx8lXzVoB03oA2gIR0Cppxk1Mue0dX2UKGgGR0Cd6tmnO0LMaAdN6ANoCEdAqav/qAz55HV9lChoBkdAm9EHRgJC0GgHTegDaAhHQKmwHObAk9l1fZQoaAZHQJ95SEqUeMhoB03oA2gIR0CpsxDzAeq8dX2UKGgGR0CdBXknCwbEaAdN6ANoCEdAqbPvOt4iYHV9lChoBkdAmOoyf16E8WgHTegDaAhHQKm4zDD0lJJ1fZQoaAZHQJfbF2JSBLBoB03oA2gIR0CpvOhdUsFudX2UKGgGR0CbMyDxsl9jaAdN6ANoCEdAqb/ac0+C9XV9lChoBkdAmD/V6AvtdGgHTegDaAhHQKnAtEjPfKp1fZQoaAZHQJsuONCJGfBoB03oA2gIR0CpxaIS+QEIdX2UKGgGR0CcbrrYGt6paAdN6ANoCEdAqcnkKE3843V9lChoBkdAmEINoN/e+GgHTegDaAhHQKnM5MXaakR1fZQoaAZHQJiWM4p+c6NoB03oA2gIR0Cpzci4rjHXdX2UKGgGR0CZAr863iJgaAdN6ANoCEdAqdKepwS8J3V9lChoBkdAm2UAF1SwW2gHTegDaAhHQKnW8oR7JGR1fZQoaAZHQJsi1/9YOlRoB03oA2gIR0Cp2esXaakRdX2UKGgGR0CYdMW7OE/TaAdN6ANoCEdAqdrNeSjgynV9lChoBkdAm42dwBHTZ2gHTegDaAhHQKnfo3Ov+wV1fZQoaAZHQJ3RtMVUModoB03oA2gIR0Cp48DjzZpSdX2UKGgGR0CeDu8ejmCAaAdN6ANoCEdAqebInQY1pHV9lChoBkdAnhHDi0fHP2gHTegDaAhHQKnnrBuXNTt1fZQoaAZHQJ3jBOvdM0xoB03oA2gIR0Cp7I42bXpXdX2UKGgGR0Cc01MQ2/BWaAdN6ANoCEdAqfC7CSA6MnV9lChoBkdAnqYNdAxBV2gHTegDaAhHQKnztpAUtZp1fZQoaAZHQJ1s4MI/qxFoB03oA2gIR0Cp9JvJaJQ+dX2UKGgGR0CdKFx0uDjBaAdN6ANoCEdAqflh5NXYDnV9lChoBkdAmJ0cn7YTTWgHTegDaAhHQKn9iiDdxhl1fZQoaAZHQJxsQQsf7rNoB03oA2gIR0CqAIemm+CcdX2UKGgGR0CdTHc4HX2/aAdN6ANoCEdAqgFmVRk3CXV9lChoBkdAmluNLpRoAWgHTegDaAhHQKoGOP2f0291fZQoaAZHQJzFb1xsEaFoB03oA2gIR0CqClzUI9kjdX2UKGgGR0CdUrdXDFZQaAdN6ANoCEdAqg1JDE3sHHV9lChoBkdAnj2msvIwNGgHTegDaAhHQKoOKH+Idlx1fZQoaAZHQJx8Sjh1klNoB03oA2gIR0CqEwHsTnJUdX2UKGgGR0Cd2B95yEL6aAdN6ANoCEdAqhcXTodMkHV9lChoBkdAnQhDcIqsl2gHTegDaAhHQKoaB2exwAF1fZQoaAZHQJrca28Zk09oB03oA2gIR0CqGuxH5JsgdX2UKGgGR0CeB9ysjmjkaAdN6ANoCEdAqh+t2zOX3XV9lChoBkdAnGuvGVAzHmgHTegDaAhHQKoj0URnOB11fZQoaAZHQJ5E5BqsU7FoB03oA2gIR0CqJtJUHY6GdX2UKGgGR0Cd7St9x6v8aAdN6ANoCEdAqier9n9NvnV9lChoBkdAnxustXgccWgHTegDaAhHQKosdcAzYVZ1fZQoaAZHQJy1ogbIcR1oB03oA2gIR0CqMJ1hTfixdX2UKGgGR0CaG0r1dxACaAdN6ANoCEdAqjOY6r/823V9lChoBkdAnpLu6I3zc2gHTegDaAhHQKo0d6KtPpJ1fZQoaAZHQJ1pK4H5aeRoB03oA2gIR0CqOU0th/iHdX2UKGgGR0CepFaNuLrHaAdN6ANoCEdAqj1qhQFcIXV9lChoBkdAmQL4Rh+fAmgHTegDaAhHQKpAaf/3nIR1fZQoaAZHQJ3rGlImPYFoB03oA2gIR0CqQUoOpbUxdX2UKGgGR0CckWLxqfvnaAdN6ANoCEdAqkYpEUj9oHV9lChoBkdAemANWEK3NWgHTegDaAhHQKpKXVWCEpR1fZQoaAZHQJ0F8rrgOz9oB03oA2gIR0CqTW+nZTQ3dX2UKGgGR0CdD9SYw7DEaAdN6ANoCEdAqk5RMJx//nVlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdacd36101a58f4129c00f813cf13666fcf94babf4320d418fa54821a016ee92
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6257f82c76b49dc3bacd6807327264fb11dd442972feed44540839f46492c89e
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3bdbaa2710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3bdbaa27a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3bdbaa2830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3bdbaa28c0>", "_build": "<function ActorCriticPolicy._build at 0x7f3bdbaa2950>", "forward": "<function ActorCriticPolicy.forward at 0x7f3bdbaa29e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3bdbaa2a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3bdbaa2b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3bdbaa2b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3bdbaa2c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3bdbaa2cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3bdbae5db0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658666707.2084956, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAATycHvqQXqD2tNQM/NQcNPz/Xl7/KYA4+0DmZvjgaCr4URRA/5PI8v6I5SL9LCOU8OnScvvwUzT4cP78+XDzEP167sD+l4ym+frrvPpdWB78qNUO/hTXOPSVRnz5+3Uo/MOicvyNaAj8e7QzA1VNLP0QoNb9HROa/Ie3FwPQAUb/sxXDAT4lHP40hi78UDlU/EjslwAfnFrwghUW/fjhQPZQIfj7VApy/RE4NP/UkCrtY7Xi9PELGv4yagr9vpvY9zsovQLPOgrtzgEi/e/tpvEzWUD8jWgI/z4ToPqMoob9o0ZU/n59Jvif8/D41rhC/v5uxPnc7S8Cqmts+G9TQPxB8I7/HyQLAl1PhPs75Lj68uqK+uXFpwElaPMDmHTE/Dr+EvozxTr+09B7Ar00Bv5jKQr+B2qc9MO8Xv3hPTMAw6Jy/I1oCPx7tDMCjKKG/PjIBvzikgj2hVgM/frGoP0EcXT9fTKe/TKgDvtPDBD2DzoQ+d0O/vzTaEL96TJc/JDQeP56eob17ywA/7l4YPj7voD/y9yy/pgOYPXz2KsDbQEG/LwKlPKOhxr1NslC/MOicvyNaAj8e7QzA1VNLP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAMnvmjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICg0py9AAAAAGPu7r8AAAAApY6XvQAAAAB56QBAAAAAANUzm70AAAAAi/7nPwAAAAAlCQK+AAAAAN7R2L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIZ681AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARFnzOwAAAACZCvK/AAAAADNsCD4AAAAA8EzoPwAAAAAa6+m9AAAAALXb/T8AAAAAbzs4vQAAAACxhPa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNBONQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKBkcjwAAAAAWdjlvwAAAACpsZ09AAAAALvK+T8AAAAACk0XvQAAAAA1BeM/AAAAANOF6rsAAAAAGr3cvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADaCILYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICa1YK9AAAAAOiH9r8AAAAAt9jkuwAAAABa0/4/AAAAAPwhSr0AAAAAryLiPwAAAAAU0dw9AAAAAMxP9b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJnFG606YE6MAWyUTegDjAF0lEdAqRDOHDaXbHV9lChoBkdAmK1zINmUW2gHTegDaAhHQKkU9yimEXd1fZQoaAZHQJt0u/L1VYJoB03oA2gIR0CpF/qlHjIadX2UKGgGR0CYppjYI0IkaAdN6ANoCEdAqRjVIK+i8HV9lChoBkdAmxkUVJtix2gHTegDaAhHQKkdq3XqZ+h1fZQoaAZHQJQPackMTexoB03oA2gIR0CpIdTcZccEdX2UKGgGR0CNmpgEU0vXaAdN6ANoCEdAqSTmY8dPtXV9lChoBkdAkMq8HbAUL2gHTegDaAhHQKklx0HQhOh1fZQoaAZHQJgzICgbp/xoB03oA2gIR0CpKq2rXDm9dX2UKGgGR0CTFBwHJLdvaAdN6ANoCEdAqS7n5vcafnV9lChoBkdAkLwUyDZlF2gHTegDaAhHQKkx5sXzlLh1fZQoaAZHQIo20tNBWxRoB03oA2gIR0CpMtRS5y2hdX2UKGgGR0CT4YFqBVdYaAdN6ANoCEdAqTfEt/WlM3V9lChoBkdAlRa/nGKhtmgHTegDaAhHQKk73stTUAl1fZQoaAZHQJpPpepn6EdoB03oA2gIR0CpPudN34bkdX2UKGgGR0CaAznYg7o0aAdN6ANoCEdAqT/E8ifQKXV9lChoBkdAnBh4cBEKE2gHTegDaAhHQKlEoTxG2Cx1fZQoaAZHQJ0BzTUiILxoB03oA2gIR0CpSM5H3DekdX2UKGgGR0CZ7w0IToMbaAdN6ANoCEdAqUvJdld1MnV9lChoBkdAmh1faYeDF2gHTegDaAhHQKlMp4AS39d1fZQoaAZHQJoXryvs7dVoB03oA2gIR0CpUYdj5KvndX2UKGgGR0CZnM8xsVL0aAdN6ANoCEdAqVW1pPAO8XV9lChoBkdAmhvvustCiWgHTegDaAhHQKlYtwCKaXt1fZQoaAZHQJmGy55JK8NoB03oA2gIR0CpWZgwXZXddX2UKGgGR0CZ9SREF4cFaAdN6ANoCEdAqV6KWE9MbnV9lChoBkdAmKfEc81XNmgHTegDaAhHQKliwJ8fFJh1fZQoaAZHQJf6czWPLgZoB03oA2gIR0CpZc5J04ipdX2UKGgGR0CexTHVwxWUaAdN6ANoCEdAqWapiCrcTXV9lChoBkdAncTeHvc8DGgHTegDaAhHQKlrbTwUg0V1fZQoaAZHQJvWFN/OMVFoB03oA2gIR0Cpb56+FlCkdX2UKGgGR0CaoWKLbYbsaAdN6ANoCEdAqXKqlUIcBHV9lChoBkdAmNqBVhkRSWgHTegDaAhHQKlzj850bLl1fZQoaAZHQJvwQyk9ECxoB03oA2gIR0CpeHitq59WdX2UKGgGR0CcfTxRVIZqaAdN6ANoCEdAqXyRXGOuJXV9lChoBkdAmpVYj4YaYWgHTegDaAhHQKl/h3GGVRl1fZQoaAZHQJ1RliSaEzxoB03oA2gIR0CpgGji4rjHdX2UKGgGR0CaPR8Hv+fiaAdN6ANoCEdAqYVNj/dZaHV9lChoBkdAm+6VHvttymgHTegDaAhHQKmJhsiSq2l1fZQoaAZHQJ0IEzguRLdoB03oA2gIR0CpjJxDTjNqdX2UKGgGR0ByttaMaS9vaAdN6ANoCEdAqY2CV2Rq5HV9lChoBkdAnD2/6j323GgHTegDaAhHQKmSX3t8eCF1fZQoaAZHQJkl27VawEBoB03oA2gIR0CplokiUxEfdX2UKGgGR0CdUj24uscRaAdN6ANoCEdAqZl+WD6Fd3V9lChoBkdAnGlO4PPLPmgHTegDaAhHQKmaVexfOUt1fZQoaAZHQJon0tVaOghoB03oA2gIR0Cpnxs+3YthdX2UKGgGR0Cbwv1y/9HdaAdN6ANoCEdAqaNC6FuejHV9lChoBkdAnM4mB8QZoGgHTegDaAhHQKmmOGxD9fl1fZQoaAZHQJsqGx8lXzVoB03oA2gIR0Cppxk1Mue0dX2UKGgGR0Cd6tmnO0LMaAdN6ANoCEdAqav/qAz55HV9lChoBkdAm9EHRgJC0GgHTegDaAhHQKmwHObAk9l1fZQoaAZHQJ95SEqUeMhoB03oA2gIR0CpsxDzAeq8dX2UKGgGR0CdBXknCwbEaAdN6ANoCEdAqbPvOt4iYHV9lChoBkdAmOoyf16E8WgHTegDaAhHQKm4zDD0lJJ1fZQoaAZHQJfbF2JSBLBoB03oA2gIR0CpvOhdUsFudX2UKGgGR0CbMyDxsl9jaAdN6ANoCEdAqb/ac0+C9XV9lChoBkdAmD/V6AvtdGgHTegDaAhHQKnAtEjPfKp1fZQoaAZHQJsuONCJGfBoB03oA2gIR0CpxaIS+QEIdX2UKGgGR0CcbrrYGt6paAdN6ANoCEdAqcnkKE3843V9lChoBkdAmEINoN/e+GgHTegDaAhHQKnM5MXaakR1fZQoaAZHQJiWM4p+c6NoB03oA2gIR0Cpzci4rjHXdX2UKGgGR0CZAr863iJgaAdN6ANoCEdAqdKepwS8J3V9lChoBkdAm2UAF1SwW2gHTegDaAhHQKnW8oR7JGR1fZQoaAZHQJsi1/9YOlRoB03oA2gIR0Cp2esXaakRdX2UKGgGR0CYdMW7OE/TaAdN6ANoCEdAqdrNeSjgynV9lChoBkdAm42dwBHTZ2gHTegDaAhHQKnfo3Ov+wV1fZQoaAZHQJ3RtMVUModoB03oA2gIR0Cp48DjzZpSdX2UKGgGR0CeDu8ejmCAaAdN6ANoCEdAqebInQY1pHV9lChoBkdAnhHDi0fHP2gHTegDaAhHQKnnrBuXNTt1fZQoaAZHQJ3jBOvdM0xoB03oA2gIR0Cp7I42bXpXdX2UKGgGR0Cc01MQ2/BWaAdN6ANoCEdAqfC7CSA6MnV9lChoBkdAnqYNdAxBV2gHTegDaAhHQKnztpAUtZp1fZQoaAZHQJ1s4MI/qxFoB03oA2gIR0Cp9JvJaJQ+dX2UKGgGR0CdKFx0uDjBaAdN6ANoCEdAqflh5NXYDnV9lChoBkdAmJ0cn7YTTWgHTegDaAhHQKn9iiDdxhl1fZQoaAZHQJxsQQsf7rNoB03oA2gIR0CqAIemm+CcdX2UKGgGR0CdTHc4HX2/aAdN6ANoCEdAqgFmVRk3CXV9lChoBkdAmluNLpRoAWgHTegDaAhHQKoGOP2f0291fZQoaAZHQJzFb1xsEaFoB03oA2gIR0CqClzUI9kjdX2UKGgGR0CdUrdXDFZQaAdN6ANoCEdAqg1JDE3sHHV9lChoBkdAnj2msvIwNGgHTegDaAhHQKoOKH+Idlx1fZQoaAZHQJx8Sjh1klNoB03oA2gIR0CqEwHsTnJUdX2UKGgGR0Cd2B95yEL6aAdN6ANoCEdAqhcXTodMkHV9lChoBkdAnQhDcIqsl2gHTegDaAhHQKoaB2exwAF1fZQoaAZHQJrca28Zk09oB03oA2gIR0CqGuxH5JsgdX2UKGgGR0CeB9ysjmjkaAdN6ANoCEdAqh+t2zOX3XV9lChoBkdAnGuvGVAzHmgHTegDaAhHQKoj0URnOB11fZQoaAZHQJ5E5BqsU7FoB03oA2gIR0CqJtJUHY6GdX2UKGgGR0Cd7St9x6v8aAdN6ANoCEdAqier9n9NvnV9lChoBkdAnxustXgccWgHTegDaAhHQKosdcAzYVZ1fZQoaAZHQJy1ogbIcR1oB03oA2gIR0CqMJ1hTfixdX2UKGgGR0CaG0r1dxACaAdN6ANoCEdAqjOY6r/823V9lChoBkdAnpLu6I3zc2gHTegDaAhHQKo0d6KtPpJ1fZQoaAZHQJ1pK4H5aeRoB03oA2gIR0CqOU0th/iHdX2UKGgGR0CepFaNuLrHaAdN6ANoCEdAqj1qhQFcIXV9lChoBkdAmQL4Rh+fAmgHTegDaAhHQKpAaf/3nIR1fZQoaAZHQJ3rGlImPYFoB03oA2gIR0CqQUoOpbUxdX2UKGgGR0CckWLxqfvnaAdN6ANoCEdAqkYpEUj9oHV9lChoBkdAemANWEK3NWgHTegDaAhHQKpKXVWCEpR1fZQoaAZHQJ0F8rrgOz9oB03oA2gIR0CqTW+nZTQ3dX2UKGgGR0CdD9SYw7DEaAdN6ANoCEdAqk5RMJx//nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d2445b65be0cb49798cbf2853b987db695aec9196d99439ad62ad4bad99484b
3
+ size 1085716
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1747.2763347183995, "std_reward": 433.04910311371935, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-24T13:50:05.017845"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:076436f5557bfe94dd865e5d0816802d8dd0bc4cf7079fb8d6385d53180e5d12
3
+ size 2763