NikitaErmolaev
commited on
Commit
·
18f8771
1
Parent(s):
080e34c
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 250.47 +/- 18.00
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4f178d5320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4f178d53b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4f178d5440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4f178d54d0>", "_build": "<function ActorCriticPolicy._build at 0x7f4f178d5560>", "forward": "<function ActorCriticPolicy.forward at 0x7f4f178d55f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4f178d5680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4f178d5710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4f178d57a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4f178d5830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4f178d58c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4f17922810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655067162.1339087, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAApgW+veNZnT/1mO6+Cvy6vhvw2Txjmbu9AAAAAAAAAAAA5Om89swnui4Lmzo1s5O1ZxFpur77t7kAAIA/AACAP2YksrwUlpK6bsuJuTo5WjWEVSK7FkvCtAAAgD8AAIA/Tc5hvXuikbpWaTC4nGsrs8caJbrpgkw3AACAPwAAgD9zwsC9XEt+ukvM4LcRWDiz2vDZuXRCAzcAAAAAAACAP4AZW77DjTc/qLRhO/F6YL4s9Bu9ss2TvQAAAAAAAAAA5uXmvfaIVrrVap+2/aaJM9EEnbuw+7E1AACAPwAAgD+zQIk9j+ZlumXYHbw7WMa18eyauZMFNTUAAAAAAAAAAPPahr2sQrs+Q4akO+peML5jlQw7wqPGvAAAAAAAAAAAgNcYPtT45T6Aodi9blBKvtvBgDxOo8i9AAAAAAAAAABmPk48j/ozuhJrSrviHxo3oR4Guz5cjLYAAIA/AACAP2YaXT3hoIy6ZlvROpoR/zPw9Dm7qNXyuQAAgD8AAIA/Zpi6PFJwvrnGEqK76e0kN0+GUzq1qJm2AACAPwAAgD8zdPs8FGSCuuAvwTrrQZI1kQm1unsJ4bkAAIA/AACAP4B3Qb5P3Z8+3ipMPtOgWL4/vg49fpIJPgAAAAAAAAAA8yqVvfYETbo285W7jZI6tm3s3Dqqbq46AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIknpP5TQ+YUCUhpRSlIwBbJRN6AOMAXSUR0CY8BwoLG70dX2UKGgGaAloD0MInSrfMxJeXkCUhpRSlGgVTegDaBZHQJj2zRc/t6Z1fZQoaAZoCWgPQwgGE38U9WllQJSGlFKUaBVN6ANoFkdAmPjpHuqm0nV9lChoBmgJaA9DCEK0VrQ5RWRAlIaUUpRoFU3oA2gWR0CY+aWl/H5rdX2UKGgGaAloD0MIQURq2kUkZECUhpRSlGgVTegDaBZHQJj9VlQMx491fZQoaAZoCWgPQwjFHAQdLfdiQJSGlFKUaBVN6ANoFkdAmQSQXyiEhHV9lChoBmgJaA9DCMx8Bz9xrV9AlIaUUpRoFU3oA2gWR0CZDCJp35erdX2UKGgGaAloD0MI4umVsoy4ZkCUhpRSlGgVTegDaBZHQJkP3LA57w91fZQoaAZoCWgPQwjaAkLr4TFiQJSGlFKUaBVN6ANoFkdAmRCOr2g3+HV9lChoBmgJaA9DCBwkRPmCc2VAlIaUUpRoFU3oA2gWR0CZFa1W8yvcdX2UKGgGaAloD0MIAmVTrvBYXECUhpRSlGgVTegDaBZHQJkgzd/J/5N1fZQoaAZoCWgPQwiKBb6iW9NgQJSGlFKUaBVN6ANoFkdAmSR8rZrYXnV9lChoBmgJaA9DCPdXj/tW1mRAlIaUUpRoFU3oA2gWR0CZJI1wHZ9NdX2UKGgGaAloD0MItK88SE/8ZUCUhpRSlGgVTegDaBZHQJklCJO32El1fZQoaAZoCWgPQwjtZHCUvOtiQJSGlFKUaBVN6ANoFkdAmTufwRXfZXV9lChoBmgJaA9DCEInhA46+GJAlIaUUpRoFU3oA2gWR0CZQQm/WUbDdX2UKGgGaAloD0MIeXdkrDa0X0CUhpRSlGgVTegDaBZHQJlFYXLvCuV1fZQoaAZoCWgPQwhvRWKCmrNgQJSGlFKUaBVN6ANoFkdAmUs15nlGPXV9lChoBmgJaA9DCMh8QKAzCGNAlIaUUpRoFU3oA2gWR0CZTSE/SpirdX2UKGgGaAloD0MIWafK94wpY0CUhpRSlGgVTegDaBZHQJlNvIxQBPt1fZQoaAZoCWgPQwhQ3zKny1NhQJSGlFKUaBVN6ANoFkdAmVEsdHUc43V9lChoBmgJaA9DCDawVYLFI1pAlIaUUpRoFU3oA2gWR0CZV77CzkZKdX2UKGgGaAloD0MI8UbmkT+HZkCUhpRSlGgVTegDaBZHQJlepiCrcTJ1fZQoaAZoCWgPQwhqMXiYdg9mQJSGlFKUaBVN6ANoFkdAmWHkzKs+3nV9lChoBmgJaA9DCIgrZ+8Md2NAlIaUUpRoFU3oA2gWR0CZYpL/jsD5dX2UKGgGaAloD0MIQKTfvg4OW0CUhpRSlGgVTegDaBZHQJlnVpmEoOR1fZQoaAZoCWgPQwiMvoI0Y2RlQJSGlFKUaBVN6ANoFkdAmXIdGqgh83V9lChoBmgJaA9DCF+WdmouOFxAlIaUUpRoFU3oA2gWR0CZdgp35eqrdX2UKGgGaAloD0MIO6buyi7QZkCUhpRSlGgVTegDaBZHQJl2HPfKp1l1fZQoaAZoCWgPQwgQ6bevA68/QJSGlFKUaBVL42gWR0CZdrgmqo60dX2UKGgGaAloD0MIFJLM6h3hX0CUhpRSlGgVTegDaBZHQJl2rv6TGHZ1fZQoaAZoCWgPQwh0QBL27YlhQJSGlFKUaBVN6ANoFkdAmXry39aUzXV9lChoBmgJaA9DCDG3e7lP5mRAlIaUUpRoFU3oA2gWR0CZkzReC04SdX2UKGgGaAloD0MIAMRdvQocYkCUhpRSlGgVTegDaBZHQJmX29ytFKF1fZQoaAZoCWgPQwi46jpUUzJfQJSGlFKUaBVN6ANoFkdAmZ5pHiFTN3V9lChoBmgJaA9DCFrwoq8geV5AlIaUUpRoFU3oA2gWR0CZoGrqt5lfdX2UKGgGaAloD0MIkbdc/VgaZ0CUhpRSlGgVTegDaBZHQJmhEuDjBEd1fZQoaAZoCWgPQwgrbtxi/vFkQJSGlFKUaBVN6ANoFkdAmaSOstCiRHV9lChoBmgJaA9DCNifxOdOjmdAlIaUUpRoFU3oA2gWR0CZq6IgeRxMdX2UKGgGaAloD0MIFHgnn56NZkCUhpRSlGgVTegDaBZHQJmzQ61b7j11fZQoaAZoCWgPQwiyYyMQr3djQJSGlFKUaBVN6ANoFkdAmbb0a/ATI3V9lChoBmgJaA9DCPAXsyWr32JAlIaUUpRoFU3oA2gWR0CZt6NJe3QVdX2UKGgGaAloD0MIutv10hSTYUCUhpRSlGgVTegDaBZHQJnJAoc7yQR1fZQoaAZoCWgPQwhjfQOTG6lmQJSGlFKUaBVN6ANoFkdAmc1cgMc6vXV9lChoBmgJaA9DCAVQjCwZRmFAlIaUUpRoFU3oA2gWR0CZzW9Net0WdX2UKGgGaAloD0MIZktWRTgTY0CUhpRSlGgVTegDaBZHQJnODTlT3qR1fZQoaAZoCWgPQwgpBHKJI65gQJSGlFKUaBVN6ANoFkdAmc4C+xnnMnV9lChoBmgJaA9DCBe86CtIq2FAlIaUUpRoFU3oA2gWR0CZ0pcuJ1q4dX2UKGgGaAloD0MIoE55dKMnYkCUhpRSlGgVTegDaBZHQJnq42GZeAx1fZQoaAZoCWgPQwgdIm5OJeFgQJSGlFKUaBVN6ANoFkdAme8ZFCswL3V9lChoBmgJaA9DCLbbLjTXHUxAlIaUUpRoFU0XAWgWR0CZ8P0T101ZdX2UKGgGaAloD0MIOnr83ibKZUCUhpRSlGgVTegDaBZHQJn0iEL6UJR1fZQoaAZoCWgPQwiAf0qVKBJkQJSGlFKUaBVN6ANoFkdAmfYty925hHV9lChoBmgJaA9DCB8r+G0IBWBAlIaUUpRoFU3oA2gWR0CZ9q8xbjcVdX2UKGgGaAloD0MIs14M5cQBZECUhpRSlGgVTegDaBZHQJn5r1qWTot1fZQoaAZoCWgPQwhmTSzwFV31P5SGlFKUaBVNFQFoFkdAmf7htgrpaHV9lChoBmgJaA9DCFioNc07zVtAlIaUUpRoFU3oA2gWR0CZ/4GA08/2dX2UKGgGaAloD0MI+BkXDoSlZECUhpRSlGgVTegDaBZHQJoFlkwvg3t1fZQoaAZoCWgPQwisHcU56nxfQJSGlFKUaBVN6ANoFkdAmgiNvsJID3V9lChoBmgJaA9DCFJgAUwZ+VtAlIaUUpRoFU3oA2gWR0CaCRrhR64UdX2UKGgGaAloD0MIn1p9dVXkMUCUhpRSlGgVTSkBaBZHQJoQSkoF3ZB1fZQoaAZoCWgPQwigiEUMO2BjQJSGlFKUaBVN6ANoFkdAmhcJFocrAnV9lChoBmgJaA9DCIcUAySaSFxAlIaUUpRoFU3oA2gWR0CaGlhttQ9BdX2UKGgGaAloD0MIuhRXlf0bYUCUhpRSlGgVTegDaBZHQJoa7XGwRoR1fZQoaAZoCWgPQwgf1hu1wrBiQJSGlFKUaBVN6ANoFkdAmhrkBXCCSXV9lChoBmgJaA9DCM/zp41qGGJAlIaUUpRoFU3oA2gWR0CaHnoWYWtVdX2UKGgGaAloD0MI3KFhMWo/ZUCUhpRSlGgVTegDaBZHQJo1rEHdGiJ1fZQoaAZoCWgPQwhTzaylgAVnQJSGlFKUaBVN6ANoFkdAmjuSxZ+x4nV9lChoBmgJaA9DCBv0pbe/eWRAlIaUUpRoFU3oA2gWR0CaP1G2TgVHdX2UKGgGaAloD0MIoWgewCL3Y0CUhpRSlGgVTegDaBZHQJpBHQAuIyl1fZQoaAZoCWgPQwiMo3ITtcliQJSGlFKUaBVN6ANoFkdAmkG3ZTQ3P3V9lChoBmgJaA9DCL1TAfe8dmVAlIaUUpRoFU3oA2gWR0CaRPQEIPbxdX2UKGgGaAloD0MI+RIqODxxY0CUhpRSlGgVTegDaBZHQJpK23jMmnh1fZQoaAZoCWgPQwjvjozV5uhgQJSGlFKUaBVN6ANoFkdAmlKzFERao3V9lChoBmgJaA9DCAQdrWpJy2RAlIaUUpRoFU3oA2gWR0CaVisHSncddX2UKGgGaAloD0MITdnpB3VEYECUhpRSlGgVTegDaBZHQJpW1mthd+p1fZQoaAZoCWgPQwig+geRDLJhQJSGlFKUaBVN6ANoFkdAml9eV9nbqXV9lChoBmgJaA9DCFIst7QaTWNAlIaUUpRoFU3oA2gWR0CaZp+KjzqbdX2UKGgGaAloD0MIyv55GjCqZECUhpRSlGgVTegDaBZHQJpqih37k4p1fZQoaAZoCWgPQwhLAz+q4WBiQJSGlFKUaBVN6ANoFkdAmmsv557gKnV9lChoBmgJaA9DCKyt2F/2K2FAlIaUUpRoFU3oA2gWR0CaayY51eSkdX2UKGgGaAloD0MI/N8RFaoAXECUhpRSlGgVTegDaBZHQJpvqScLBsR1fZQoaAZoCWgPQwjcD3hgAKpjQJSGlFKUaBVN6ANoFkdAmogR3qzJIXV9lChoBmgJaA9DCAt/hjdr3ENAlIaUUpRoFU0OAWgWR0CainVTaTOgdX2UKGgGaAloD0MI/Wg4Ze4zZUCUhpRSlGgVTegDaBZHQJqOotTUAkt1fZQoaAZoCWgPQwjK3lLOFztkQJSGlFKUaBVN6ANoFkdAmpKnvDxb0XV9lChoBmgJaA9DCE26LZGLLWFAlIaUUpRoFU3oA2gWR0CalGYGt6omdX2UKGgGaAloD0MIqJAr9aydZ0CUhpRSlGgVTegDaBZHQJqU/M1TBIp1fZQoaAZoCWgPQwjzx7Q2DeZlQJSGlFKUaBVN6ANoFkdAmpfxP420iXV9lChoBmgJaA9DCH15AfbRB2BAlIaUUpRoFU3oA2gWR0CanWnLaEi/dX2UKGgGaAloD0MIbJc2HJbeSECUhpRSlGgVTTIBaBZHQJqhJlbu+h51fZQoaAZoCWgPQwhyNEdW/rZmQJSGlFKUaBVN6ANoFkdAmqTnrUsnRnV9lChoBmgJaA9DCHE9CtejEmBAlIaUUpRoFU3oA2gWR0CaqDPFvQ4TdX2UKGgGaAloD0MILT4FwHicZkCUhpRSlGgVTegDaBZHQJqo1WeYlY51fZQoaAZoCWgPQwidnQyOkoZkQJSGlFKUaBVN6ANoFkdAmrE+vZAY53V9lChoBmgJaA9DCBMteTwtzGJAlIaUUpRoFU3oA2gWR0CavpmE4//vdX2UKGgGaAloD0MIsWmlEMi9YUCUhpRSlGgVTegDaBZHQJq/S+qR2bJ1fZQoaAZoCWgPQwi5GtmVlhphQJSGlFKUaBVN6ANoFkdAmr9C+lCTlnV9lChoBmgJaA9DCPjj9ssn519AlIaUUpRoFU3oA2gWR0Caw3wdKdxydX2UKGgGaAloD0MIM8FwruF9YkCUhpRSlGgVTegDaBZHQJrI/dHlOoJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a380fdafeb85d4e61af71562229c656a9ffca6a10ecde25485459d96a646fc77
|
3 |
+
size 144156
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4f178d5320>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4f178d53b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4f178d5440>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4f178d54d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4f178d5560>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4f178d55f0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4f178d5680>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4f178d5710>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4f178d57a0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4f178d5830>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4f178d58c0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f4f17922810>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1655067162.1339087,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAApgW+veNZnT/1mO6+Cvy6vhvw2Txjmbu9AAAAAAAAAAAA5Om89swnui4Lmzo1s5O1ZxFpur77t7kAAIA/AACAP2YksrwUlpK6bsuJuTo5WjWEVSK7FkvCtAAAgD8AAIA/Tc5hvXuikbpWaTC4nGsrs8caJbrpgkw3AACAPwAAgD9zwsC9XEt+ukvM4LcRWDiz2vDZuXRCAzcAAAAAAACAP4AZW77DjTc/qLRhO/F6YL4s9Bu9ss2TvQAAAAAAAAAA5uXmvfaIVrrVap+2/aaJM9EEnbuw+7E1AACAPwAAgD+zQIk9j+ZlumXYHbw7WMa18eyauZMFNTUAAAAAAAAAAPPahr2sQrs+Q4akO+peML5jlQw7wqPGvAAAAAAAAAAAgNcYPtT45T6Aodi9blBKvtvBgDxOo8i9AAAAAAAAAABmPk48j/ozuhJrSrviHxo3oR4Guz5cjLYAAIA/AACAP2YaXT3hoIy6ZlvROpoR/zPw9Dm7qNXyuQAAgD8AAIA/Zpi6PFJwvrnGEqK76e0kN0+GUzq1qJm2AACAPwAAgD8zdPs8FGSCuuAvwTrrQZI1kQm1unsJ4bkAAIA/AACAP4B3Qb5P3Z8+3ipMPtOgWL4/vg49fpIJPgAAAAAAAAAA8yqVvfYETbo285W7jZI6tm3s3Dqqbq46AACAPwAAgD+UdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIknpP5TQ+YUCUhpRSlIwBbJRN6AOMAXSUR0CY8BwoLG70dX2UKGgGaAloD0MInSrfMxJeXkCUhpRSlGgVTegDaBZHQJj2zRc/t6Z1fZQoaAZoCWgPQwgGE38U9WllQJSGlFKUaBVN6ANoFkdAmPjpHuqm0nV9lChoBmgJaA9DCEK0VrQ5RWRAlIaUUpRoFU3oA2gWR0CY+aWl/H5rdX2UKGgGaAloD0MIQURq2kUkZECUhpRSlGgVTegDaBZHQJj9VlQMx491fZQoaAZoCWgPQwjFHAQdLfdiQJSGlFKUaBVN6ANoFkdAmQSQXyiEhHV9lChoBmgJaA9DCMx8Bz9xrV9AlIaUUpRoFU3oA2gWR0CZDCJp35erdX2UKGgGaAloD0MI4umVsoy4ZkCUhpRSlGgVTegDaBZHQJkP3LA57w91fZQoaAZoCWgPQwjaAkLr4TFiQJSGlFKUaBVN6ANoFkdAmRCOr2g3+HV9lChoBmgJaA9DCBwkRPmCc2VAlIaUUpRoFU3oA2gWR0CZFa1W8yvcdX2UKGgGaAloD0MIAmVTrvBYXECUhpRSlGgVTegDaBZHQJkgzd/J/5N1fZQoaAZoCWgPQwiKBb6iW9NgQJSGlFKUaBVN6ANoFkdAmSR8rZrYXnV9lChoBmgJaA9DCPdXj/tW1mRAlIaUUpRoFU3oA2gWR0CZJI1wHZ9NdX2UKGgGaAloD0MItK88SE/8ZUCUhpRSlGgVTegDaBZHQJklCJO32El1fZQoaAZoCWgPQwjtZHCUvOtiQJSGlFKUaBVN6ANoFkdAmTufwRXfZXV9lChoBmgJaA9DCEInhA46+GJAlIaUUpRoFU3oA2gWR0CZQQm/WUbDdX2UKGgGaAloD0MIeXdkrDa0X0CUhpRSlGgVTegDaBZHQJlFYXLvCuV1fZQoaAZoCWgPQwhvRWKCmrNgQJSGlFKUaBVN6ANoFkdAmUs15nlGPXV9lChoBmgJaA9DCMh8QKAzCGNAlIaUUpRoFU3oA2gWR0CZTSE/SpirdX2UKGgGaAloD0MIWafK94wpY0CUhpRSlGgVTegDaBZHQJlNvIxQBPt1fZQoaAZoCWgPQwhQ3zKny1NhQJSGlFKUaBVN6ANoFkdAmVEsdHUc43V9lChoBmgJaA9DCDawVYLFI1pAlIaUUpRoFU3oA2gWR0CZV77CzkZKdX2UKGgGaAloD0MI8UbmkT+HZkCUhpRSlGgVTegDaBZHQJlepiCrcTJ1fZQoaAZoCWgPQwhqMXiYdg9mQJSGlFKUaBVN6ANoFkdAmWHkzKs+3nV9lChoBmgJaA9DCIgrZ+8Md2NAlIaUUpRoFU3oA2gWR0CZYpL/jsD5dX2UKGgGaAloD0MIQKTfvg4OW0CUhpRSlGgVTegDaBZHQJlnVpmEoOR1fZQoaAZoCWgPQwiMvoI0Y2RlQJSGlFKUaBVN6ANoFkdAmXIdGqgh83V9lChoBmgJaA9DCF+WdmouOFxAlIaUUpRoFU3oA2gWR0CZdgp35eqrdX2UKGgGaAloD0MIO6buyi7QZkCUhpRSlGgVTegDaBZHQJl2HPfKp1l1fZQoaAZoCWgPQwgQ6bevA68/QJSGlFKUaBVL42gWR0CZdrgmqo60dX2UKGgGaAloD0MIFJLM6h3hX0CUhpRSlGgVTegDaBZHQJl2rv6TGHZ1fZQoaAZoCWgPQwh0QBL27YlhQJSGlFKUaBVN6ANoFkdAmXry39aUzXV9lChoBmgJaA9DCDG3e7lP5mRAlIaUUpRoFU3oA2gWR0CZkzReC04SdX2UKGgGaAloD0MIAMRdvQocYkCUhpRSlGgVTegDaBZHQJmX29ytFKF1fZQoaAZoCWgPQwi46jpUUzJfQJSGlFKUaBVN6ANoFkdAmZ5pHiFTN3V9lChoBmgJaA9DCFrwoq8geV5AlIaUUpRoFU3oA2gWR0CZoGrqt5lfdX2UKGgGaAloD0MIkbdc/VgaZ0CUhpRSlGgVTegDaBZHQJmhEuDjBEd1fZQoaAZoCWgPQwgrbtxi/vFkQJSGlFKUaBVN6ANoFkdAmaSOstCiRHV9lChoBmgJaA9DCNifxOdOjmdAlIaUUpRoFU3oA2gWR0CZq6IgeRxMdX2UKGgGaAloD0MIFHgnn56NZkCUhpRSlGgVTegDaBZHQJmzQ61b7j11fZQoaAZoCWgPQwiyYyMQr3djQJSGlFKUaBVN6ANoFkdAmbb0a/ATI3V9lChoBmgJaA9DCPAXsyWr32JAlIaUUpRoFU3oA2gWR0CZt6NJe3QVdX2UKGgGaAloD0MIutv10hSTYUCUhpRSlGgVTegDaBZHQJnJAoc7yQR1fZQoaAZoCWgPQwhjfQOTG6lmQJSGlFKUaBVN6ANoFkdAmc1cgMc6vXV9lChoBmgJaA9DCAVQjCwZRmFAlIaUUpRoFU3oA2gWR0CZzW9Net0WdX2UKGgGaAloD0MIZktWRTgTY0CUhpRSlGgVTegDaBZHQJnODTlT3qR1fZQoaAZoCWgPQwgpBHKJI65gQJSGlFKUaBVN6ANoFkdAmc4C+xnnMnV9lChoBmgJaA9DCBe86CtIq2FAlIaUUpRoFU3oA2gWR0CZ0pcuJ1q4dX2UKGgGaAloD0MIoE55dKMnYkCUhpRSlGgVTegDaBZHQJnq42GZeAx1fZQoaAZoCWgPQwgdIm5OJeFgQJSGlFKUaBVN6ANoFkdAme8ZFCswL3V9lChoBmgJaA9DCLbbLjTXHUxAlIaUUpRoFU0XAWgWR0CZ8P0T101ZdX2UKGgGaAloD0MIOnr83ibKZUCUhpRSlGgVTegDaBZHQJn0iEL6UJR1fZQoaAZoCWgPQwiAf0qVKBJkQJSGlFKUaBVN6ANoFkdAmfYty925hHV9lChoBmgJaA9DCB8r+G0IBWBAlIaUUpRoFU3oA2gWR0CZ9q8xbjcVdX2UKGgGaAloD0MIs14M5cQBZECUhpRSlGgVTegDaBZHQJn5r1qWTot1fZQoaAZoCWgPQwhmTSzwFV31P5SGlFKUaBVNFQFoFkdAmf7htgrpaHV9lChoBmgJaA9DCFioNc07zVtAlIaUUpRoFU3oA2gWR0CZ/4GA08/2dX2UKGgGaAloD0MI+BkXDoSlZECUhpRSlGgVTegDaBZHQJoFlkwvg3t1fZQoaAZoCWgPQwisHcU56nxfQJSGlFKUaBVN6ANoFkdAmgiNvsJID3V9lChoBmgJaA9DCFJgAUwZ+VtAlIaUUpRoFU3oA2gWR0CaCRrhR64UdX2UKGgGaAloD0MIn1p9dVXkMUCUhpRSlGgVTSkBaBZHQJoQSkoF3ZB1fZQoaAZoCWgPQwigiEUMO2BjQJSGlFKUaBVN6ANoFkdAmhcJFocrAnV9lChoBmgJaA9DCIcUAySaSFxAlIaUUpRoFU3oA2gWR0CaGlhttQ9BdX2UKGgGaAloD0MIuhRXlf0bYUCUhpRSlGgVTegDaBZHQJoa7XGwRoR1fZQoaAZoCWgPQwgf1hu1wrBiQJSGlFKUaBVN6ANoFkdAmhrkBXCCSXV9lChoBmgJaA9DCM/zp41qGGJAlIaUUpRoFU3oA2gWR0CaHnoWYWtVdX2UKGgGaAloD0MI3KFhMWo/ZUCUhpRSlGgVTegDaBZHQJo1rEHdGiJ1fZQoaAZoCWgPQwhTzaylgAVnQJSGlFKUaBVN6ANoFkdAmjuSxZ+x4nV9lChoBmgJaA9DCBv0pbe/eWRAlIaUUpRoFU3oA2gWR0CaP1G2TgVHdX2UKGgGaAloD0MIoWgewCL3Y0CUhpRSlGgVTegDaBZHQJpBHQAuIyl1fZQoaAZoCWgPQwiMo3ITtcliQJSGlFKUaBVN6ANoFkdAmkG3ZTQ3P3V9lChoBmgJaA9DCL1TAfe8dmVAlIaUUpRoFU3oA2gWR0CaRPQEIPbxdX2UKGgGaAloD0MI+RIqODxxY0CUhpRSlGgVTegDaBZHQJpK23jMmnh1fZQoaAZoCWgPQwjvjozV5uhgQJSGlFKUaBVN6ANoFkdAmlKzFERao3V9lChoBmgJaA9DCAQdrWpJy2RAlIaUUpRoFU3oA2gWR0CaVisHSncddX2UKGgGaAloD0MITdnpB3VEYECUhpRSlGgVTegDaBZHQJpW1mthd+p1fZQoaAZoCWgPQwig+geRDLJhQJSGlFKUaBVN6ANoFkdAml9eV9nbqXV9lChoBmgJaA9DCFIst7QaTWNAlIaUUpRoFU3oA2gWR0CaZp+KjzqbdX2UKGgGaAloD0MIyv55GjCqZECUhpRSlGgVTegDaBZHQJpqih37k4p1fZQoaAZoCWgPQwhLAz+q4WBiQJSGlFKUaBVN6ANoFkdAmmsv557gKnV9lChoBmgJaA9DCKyt2F/2K2FAlIaUUpRoFU3oA2gWR0CaayY51eSkdX2UKGgGaAloD0MI/N8RFaoAXECUhpRSlGgVTegDaBZHQJpvqScLBsR1fZQoaAZoCWgPQwjcD3hgAKpjQJSGlFKUaBVN6ANoFkdAmogR3qzJIXV9lChoBmgJaA9DCAt/hjdr3ENAlIaUUpRoFU0OAWgWR0CainVTaTOgdX2UKGgGaAloD0MI/Wg4Ze4zZUCUhpRSlGgVTegDaBZHQJqOotTUAkt1fZQoaAZoCWgPQwjK3lLOFztkQJSGlFKUaBVN6ANoFkdAmpKnvDxb0XV9lChoBmgJaA9DCE26LZGLLWFAlIaUUpRoFU3oA2gWR0CalGYGt6omdX2UKGgGaAloD0MIqJAr9aydZ0CUhpRSlGgVTegDaBZHQJqU/M1TBIp1fZQoaAZoCWgPQwjzx7Q2DeZlQJSGlFKUaBVN6ANoFkdAmpfxP420iXV9lChoBmgJaA9DCH15AfbRB2BAlIaUUpRoFU3oA2gWR0CanWnLaEi/dX2UKGgGaAloD0MIbJc2HJbeSECUhpRSlGgVTTIBaBZHQJqhJlbu+h51fZQoaAZoCWgPQwhyNEdW/rZmQJSGlFKUaBVN6ANoFkdAmqTnrUsnRnV9lChoBmgJaA9DCHE9CtejEmBAlIaUUpRoFU3oA2gWR0CaqDPFvQ4TdX2UKGgGaAloD0MILT4FwHicZkCUhpRSlGgVTegDaBZHQJqo1WeYlY51fZQoaAZoCWgPQwidnQyOkoZkQJSGlFKUaBVN6ANoFkdAmrE+vZAY53V9lChoBmgJaA9DCBMteTwtzGJAlIaUUpRoFU3oA2gWR0CavpmE4//vdX2UKGgGaAloD0MIsWmlEMi9YUCUhpRSlGgVTegDaBZHQJq/S+qR2bJ1fZQoaAZoCWgPQwi5GtmVlhphQJSGlFKUaBVN6ANoFkdAmr9C+lCTlnV9lChoBmgJaA9DCPjj9ssn519AlIaUUpRoFU3oA2gWR0Caw3wdKdxydX2UKGgGaAloD0MIM8FwruF9YkCUhpRSlGgVTegDaBZHQJrI/dHlOoJ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c918368b9f8186325f90b66878b5cf68cdf702ee1d481fdcef7f149b0e996bd
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a14fe98e3a2e57e82f82ac530a657f56587ecbb2ce079c9244e161e5c3f0ed3
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee22cb973a3f102f39a812fe81decac3ab429965aa59ae16a5e8a759f68c490e
|
3 |
+
size 242302
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 250.47436160352032, "std_reward": 17.999685179964942, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-12T21:11:22.168098"}
|