File size: 1,394 Bytes
ec6e9f9 0213e4a ec6e9f9 0213e4a ec6e9f9 0213e4a ec6e9f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
base_model: UrukHan/t5-russian-summarization
tags:
- generated_from_trainer
model-index:
- name: Lomonosov-t5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Lomonosov-t5
This model is a fine-tuned version of [UrukHan/t5-russian-summarization](https://huggingface.co/UrukHan/t5-russian-summarization) on the Gazeta dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.5822
- eval_rouge1: 12.4365
- eval_rouge2: 2.3859
- eval_rougeL: 12.4889
- eval_rougeLsum: 12.4796
- eval_gen_len: 15.7862
- eval_runtime: 46.8578
- eval_samples_per_second: 10.18
- eval_steps_per_second: 0.64
- epoch: 1.18
- step: 10000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1
|