File size: 1,394 Bytes
ec6e9f9
 
 
 
 
0213e4a
ec6e9f9
 
 
 
 
 
0213e4a
ec6e9f9
0213e4a
ec6e9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
base_model: UrukHan/t5-russian-summarization
tags:
- generated_from_trainer
model-index:
- name: Lomonosov-t5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Lomonosov-t5

This model is a fine-tuned version of [UrukHan/t5-russian-summarization](https://huggingface.co/UrukHan/t5-russian-summarization) on the Gazeta dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.5822
- eval_rouge1: 12.4365
- eval_rouge2: 2.3859
- eval_rougeL: 12.4889
- eval_rougeLsum: 12.4796
- eval_gen_len: 15.7862
- eval_runtime: 46.8578
- eval_samples_per_second: 10.18
- eval_steps_per_second: 0.64
- epoch: 1.18
- step: 10000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1