NikosKokkini commited on
Commit
747d457
1 Parent(s): 3a6e763

push into the hub the trained PPO on LunarLander-v2 enviroment

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -419.22 +/- 81.93
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7ef391ddc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7ef391de50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7ef391dee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7ef391df70>", "_build": "<function ActorCriticPolicy._build at 0x7f7ef3922040>", "forward": "<function ActorCriticPolicy.forward at 0x7f7ef39220d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7ef3922160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7ef39221f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7ef3922280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7ef3922310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7ef39223a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7ef3922430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7ef391f270>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673380357045284876, "learning_rate": 3e-05, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+/3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2YfL4DlJ8/UpMMvZUKxL4K6jy8K3oLPQAAAAAAAAAAl0tAv9wNID/hA56+x+ADv91Oxb5q7RG9AAAAAAAAAAC8Jim/6zIYvoolFL5i7fU8/zs+O91onr0AAAAAAAAAAPrkIr+yioS+0xRivA2LTz2z/9y89KuLPQAAgD8AAIA/TYL6vSCbxD9fmQy/9vM8PCtUjz39L629AAAAAAAAAAAOn5y+EjnfPKhxsz3riBc8q68mvrVLOr4AAAAAAAAAAM2PrzzVWMQ/+quWPfYoGT1xUoe9XYUxvQAAAAAAAAAAOlN6vkxVFT8P45G8bY8Ov0OIFL3r9oa9AAAAAAAAAAAAKOK8obQPPqFxlT8ycmG/mK4yvm41KD8AAAAAAAAAACplXb4DnRm8befVvQnpKr1ei6k9bmsLPQAAAAAAAAAA1msEvzaYoz/BDRq//LDBvsE1tr4stxC+AAAAAAAAAAArchM/ifM9PTrTvj08AyK/qUdoPl3ktL0AAAAAAAAAAKqZ8z6sK/u9JhDfPWQkfb7EgEq+47LdvwAAAAAAAAAAgCrIPXWPkj9qgOQ+jpgOv3jyWL1G8BW9AAAAAAAAAACmEq49RXSSP7hdrD5p1wW/xPuOPZJwsj0AAAAAAAAAANrAyz3jUQo/GDcMPe8p/74xWTO9zbI2vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXvI/+bvDM0CUhpRSlIwBbJRLtIwBdJRHQHNfVhb4agp1fZQoaAZoCWgPQwgrTN9rCDo1wJSGlFKUaBVLsmgWR0BzY5yFPBSDdX2UKGgGaAloD0MIQQ3fwrpNTcCUhpRSlGgVS2ZoFkdAc2Rh3JPqLXV9lChoBmgJaA9DCF6FlJ9Ui0jAlIaUUpRoFUuEaBZHQHNklCkXUH91fZQoaAZoCWgPQwij5qvkY1cZwJSGlFKUaBVLumgWR0BzaByOq//OdX2UKGgGaAloD0MIOiAJ+3ZiT0CUhpRSlGgVTegDaBZHQHNoILsrupl1fZQoaAZoCWgPQwgi4Xt/g1lZwJSGlFKUaBVLpGgWR0BzamyOaOPvdX2UKGgGaAloD0MIoGzKFd71F8CUhpRSlGgVS25oFkdAc2slrM1TBXV9lChoBmgJaA9DCNE8gEV+vT3AlIaUUpRoFUuhaBZHQHNrck2P1ct1fZQoaAZoCWgPQwjd0mpI3ExSwJSGlFKUaBVLn2gWR0Bza6pm29csdX2UKGgGaAloD0MI5ljeVQ+Y9r+UhpRSlGgVS61oFkdAc3HuwX668XV9lChoBmgJaA9DCA1TW+og7xbAlIaUUpRoFUtlaBZHQHNza2jO9nN1fZQoaAZoCWgPQwgFoidlUicyQJSGlFKUaBVLd2gWR0BzdYXJo0yhdX2UKGgGaAloD0MI8YRefxJfIsCUhpRSlGgVS5ZoFkdAc3YHJtBOYnV9lChoBmgJaA9DCAgCZOjY90XAlIaUUpRoFUt+aBZHQHN+rEtNBWx1fZQoaAZoCWgPQwjWV1cFamEawJSGlFKUaBVLlWgWR0BzfxX4j8k2dX2UKGgGaAloD0MIzAwbZf1SQ8CUhpRSlGgVS/RoFkdAc4I6guh9LHV9lChoBmgJaA9DCBWOIJVit0LAlIaUUpRoFUuSaBZHQHODHTRYzSF1fZQoaAZoCWgPQwgwYwrWOOFDwJSGlFKUaBVLo2gWR0BzhJSXMQmNdX2UKGgGaAloD0MIpP0PsFbpRMCUhpRSlGgVS6RoFkdAc4YZ1V5rxnV9lChoBmgJaA9DCHzzGyYaEDPAlIaUUpRoFUvlaBZHQHOJg5imVJN1fZQoaAZoCWgPQwgddt8xPIYtQJSGlFKUaBVLdGgWR0BziYntv4ucdX2UKGgGaAloD0MIoIhFDDvsFcCUhpRSlGgVS4xoFkdAc44jT8YQ8XV9lChoBmgJaA9DCBCWsaGbG1nAlIaUUpRoFUupaBZHQHOQhdt2s7x1fZQoaAZoCWgPQwjSpuoe2Q5WQJSGlFKUaBVN6ANoFkdAc5Wp5eJHiHV9lChoBmgJaA9DCIuKOJ1kDzDAlIaUUpRoFUviaBZHQHOYmCqZML51fZQoaAZoCWgPQwjbUDHO34tewJSGlFKUaBVLYWgWR0BzmjKzRhMKdX2UKGgGaAloD0MI5iSUvhAqOsCUhpRSlGgVS4JoFkdAc5sPkq+ajXV9lChoBmgJaA9DCEChnj4CPUXAlIaUUpRoFUusaBZHQHOc7dnCfpV1fZQoaAZoCWgPQwh56LtbWfI1wJSGlFKUaBVLtmgWR0Bzni8scyWSdX2UKGgGaAloD0MIigYpeArFS8CUhpRSlGgVS7VoFkdAc6Hvjfek6HV9lChoBmgJaA9DCKJBCp5CzhtAlIaUUpRoFUuWaBZHQHPuaSPluFZ1fZQoaAZoCWgPQwifrBiuDkAVwJSGlFKUaBVLcmgWR0Bz7w/lhgE2dX2UKGgGaAloD0MImrFoOjsZGcCUhpRSlGgVS8loFkdAc/AMC9ytFXV9lChoBmgJaA9DCFySA3Y1KURAlIaUUpRoFUuOaBZHQHP75zT4L1F1fZQoaAZoCWgPQwjHvI44ZIPgv5SGlFKUaBVL+mgWR0Bz/CKEWZZ0dX2UKGgGaAloD0MIQzunWaBtHkCUhpRSlGgVS5RoFkdAc/9LPldTpHV9lChoBmgJaA9DCJZ4QNmUo0dAlIaUUpRoFUu2aBZHQHQANu1ndwh1fZQoaAZoCWgPQwh4mWGjrLcywJSGlFKUaBVLiGgWR0B0Abr/sE7odX2UKGgGaAloD0MI1H5rJ0qGT8CUhpRSlGgVS+hoFkdAdAHvZAY51nV9lChoBmgJaA9DCIjaNoyC2C9AlIaUUpRoFUt2aBZHQHQFUYoAn2J1fZQoaAZoCWgPQwgv3o/bLx8pQJSGlFKUaBVLi2gWR0B0CCvRqoIfdX2UKGgGaAloD0MIhLuzdtsVS8CUhpRSlGgVS8toFkdAdAymNipeeHV9lChoBmgJaA9DCMmqCDcZNRNAlIaUUpRoFU3oA2gWR0B0EYQjD8+BdX2UKGgGaAloD0MICeHRxhFTNcCUhpRSlGgVTegDaBZHQHQVtO2y9mJ1fZQoaAZoCWgPQwh8mL1sO+UjwJSGlFKUaBVL4mgWR0B0F3kKeCkHdX2UKGgGaAloD0MIpztPPGenOECUhpRSlGgVS4BoFkdAdBfFiay8jHV9lChoBmgJaA9DCFCLwcO0VzrAlIaUUpRoFUuaaBZHQHQYeumrKeV1fZQoaAZoCWgPQwisrG2Kx80yQJSGlFKUaBVLyWgWR0B0H/ZElVtGdX2UKGgGaAloD0MI81gzMsg7S8CUhpRSlGgVS7VoFkdAdCGGIsRQJ3V9lChoBmgJaA9DCP2/6siR0jtAlIaUUpRoFUumaBZHQHQiQJswco91fZQoaAZoCWgPQwi6aTNOQzQHwJSGlFKUaBVLhmgWR0B0I2fzz3AVdX2UKGgGaAloD0MIT8sPXOUzQUCUhpRSlGgVS9loFkdAdCdpjc2zfXV9lChoBmgJaA9DCJgYy/RLGkpAlIaUUpRoFU3oA2gWR0B0KJR3u/lAdX2UKGgGaAloD0MIPdS2YRTWRUCUhpRSlGgVS5xoFkdAdCrIQe3hGnV9lChoBmgJaA9DCB6jPPNyWFLAlIaUUpRoFUuOaBZHQHQsI7Rv3rV1fZQoaAZoCWgPQwh2OLpKd5coQJSGlFKUaBVL3mgWR0B0LQbLlmvodX2UKGgGaAloD0MIiIGufQG95z+UhpRSlGgVS65oFkdAdDJqjrRjSXV9lChoBmgJaA9DCF7zqs5qYS7AlIaUUpRoFUupaBZHQHQyaABkqc51fZQoaAZoCWgPQwinlq31RRo7wJSGlFKUaBVLf2gWR0B0NJxCIDYAdX2UKGgGaAloD0MIhqsDIO60TcCUhpRSlGgVS4xoFkdAdDVBClabF3V9lChoBmgJaA9DCGhCk8SS3jLAlIaUUpRoFUvGaBZHQHQ1yGetjkN1fZQoaAZoCWgPQwhwBn+/mLdMwJSGlFKUaBVLb2gWR0B0OIQcxTKldX2UKGgGaAloD0MIgJpattZnI0CUhpRSlGgVS35oFkdAdDmvovBacXV9lChoBmgJaA9DCPwaSYJwWTRAlIaUUpRoFUuWaBZHQHQ5uMMqjJx1fZQoaAZoCWgPQwjSxhFr8XU8QJSGlFKUaBVLdGgWR0B0PibgCOm0dX2UKGgGaAloD0MIRfXWwFYBJ8CUhpRSlGgVS3NoFkdAdEb+TNdJKHV9lChoBmgJaA9DCJPGaB1VwTPAlIaUUpRoFUvwaBZHQHRHWKhtcfN1fZQoaAZoCWgPQwgUz9kCQr1XwJSGlFKUaBVLnmgWR0B0TAfEGZ/kdX2UKGgGaAloD0MIEAcJUb4aS8CUhpRSlGgVS7VoFkdAdFA0Rvm5lXV9lChoBmgJaA9DCF9cqtIWmFzAlIaUUpRoFU35AWgWR0B0U4yqMm4RdX2UKGgGaAloD0MIHy+kw0OYD8CUhpRSlGgVS7hoFkdAdFR8B+4LC3V9lChoBmgJaA9DCOsfRDLk2B/AlIaUUpRoFU0DAWgWR0B0VtDPWxyGdX2UKGgGaAloD0MIX0VGB6TAasCUhpRSlGgVS7doFkdAdFhn4wh4dXV9lChoBmgJaA9DCD51rFJ6li1AlIaUUpRoFUu1aBZHQHRZekxh2GJ1fZQoaAZoCWgPQwi8lLpkHD5QQJSGlFKUaBVN6ANoFkdAdFt1klNUO3V9lChoBmgJaA9DCNF2TN2VNTBAlIaUUpRoFUvraBZHQHReVuzhP0t1fZQoaAZoCWgPQwg9RQ4RN+M9QJSGlFKUaBVLsmgWR0B0XklfJFLGdX2UKGgGaAloD0MIDLCPTl21UMCUhpRSlGgVS9loFkdAdF+eizsyBXV9lChoBmgJaA9DCC/9S1KZsEXAlIaUUpRoFUucaBZHQHRnKNQ0oBt1fZQoaAZoCWgPQwg3UOCdfHomQJSGlFKUaBVLlmgWR0B0aeIMz/IbdX2UKGgGaAloD0MIdZSD2QTUVMCUhpRSlGgVS3JoFkdAdGv2fTTfBXV9lChoBmgJaA9DCIGVQ4tsLzdAlIaUUpRoFUuLaBZHQHRtteUpuuR1fZQoaAZoCWgPQwj2Yign2qk9QJSGlFKUaBVL42gWR0B0bqXeFcptdX2UKGgGaAloD0MIpIl3gCfpNsCUhpRSlGgVS6JoFkdAdHOMewLVnXV9lChoBmgJaA9DCFqEYitopjhAlIaUUpRoFUuMaBZHQHR1sQiA2AJ1fZQoaAZoCWgPQwg6QDBHj+tHwJSGlFKUaBVL4WgWR0B0epVhkRSQdX2UKGgGaAloD0MIDat4I/NcM8CUhpRSlGgVS/JoFkdAdH7kWykbgnV9lChoBmgJaA9DCPW52or9KTNAlIaUUpRoFUuOaBZHQHSEiWZ7Xxx1fZQoaAZoCWgPQwiR8SiV8DQywJSGlFKUaBVL0mgWR0B0hSakRBeHdX2UKGgGaAloD0MI+62dKAkFMkCUhpRSlGgVS2loFkdAdIgw97ngYXV9lChoBmgJaA9DCBtjJ7wEKU3AlIaUUpRoFUuRaBZHQHSJ4l2NedF1fZQoaAZoCWgPQwj7zi9K0IVQwJSGlFKUaBVLnmgWR0B0in2Xb/OudX2UKGgGaAloD0MIea7vw0HKJcCUhpRSlGgVTQUBaBZHQHSN2DQJHAh1fZQoaAZoCWgPQwhKDW0ANvZKwJSGlFKUaBVLt2gWR0B0ksK2KEWZdX2UKGgGaAloD0MIeeV620yDQkCUhpRSlGgVTegDaBZHQHSUnpGFzuF1fZQoaAZoCWgPQwjQYFPnUeErwJSGlFKUaBVLk2gWR0B0m63PRiPRdX2UKGgGaAloD0MIGw5LAz/0S0CUhpRSlGgVTegDaBZHQHSb10cOskp1fZQoaAZoCWgPQwgIWoEhq+dLwJSGlFKUaBVLx2gWR0B0nErEtNBXdX2UKGgGaAloD0MI/oFy274HMMCUhpRSlGgVS65oFkdAdJyA0bcXWXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3915ffc3515c9a827bccded7333ebfafd9dc12c3cd3358fed5ed7da35aabde1b
3
+ size 147305
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7ef391ddc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7ef391de50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7ef391dee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7ef391df70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7ef3922040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7ef39220d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7ef3922160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7ef39221f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7ef3922280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7ef3922310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7ef39223a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7ef3922430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f7ef391f270>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 507904,
47
+ "_total_timesteps": 500000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673380357045284876,
52
+ "learning_rate": 3e-05,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+/3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2YfL4DlJ8/UpMMvZUKxL4K6jy8K3oLPQAAAAAAAAAAl0tAv9wNID/hA56+x+ADv91Oxb5q7RG9AAAAAAAAAAC8Jim/6zIYvoolFL5i7fU8/zs+O91onr0AAAAAAAAAAPrkIr+yioS+0xRivA2LTz2z/9y89KuLPQAAgD8AAIA/TYL6vSCbxD9fmQy/9vM8PCtUjz39L629AAAAAAAAAAAOn5y+EjnfPKhxsz3riBc8q68mvrVLOr4AAAAAAAAAAM2PrzzVWMQ/+quWPfYoGT1xUoe9XYUxvQAAAAAAAAAAOlN6vkxVFT8P45G8bY8Ov0OIFL3r9oa9AAAAAAAAAAAAKOK8obQPPqFxlT8ycmG/mK4yvm41KD8AAAAAAAAAACplXb4DnRm8befVvQnpKr1ei6k9bmsLPQAAAAAAAAAA1msEvzaYoz/BDRq//LDBvsE1tr4stxC+AAAAAAAAAAArchM/ifM9PTrTvj08AyK/qUdoPl3ktL0AAAAAAAAAAKqZ8z6sK/u9JhDfPWQkfb7EgEq+47LdvwAAAAAAAAAAgCrIPXWPkj9qgOQ+jpgOv3jyWL1G8BW9AAAAAAAAAACmEq49RXSSP7hdrD5p1wW/xPuOPZJwsj0AAAAAAAAAANrAyz3jUQo/GDcMPe8p/74xWTO9zbI2vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXvI/+bvDM0CUhpRSlIwBbJRLtIwBdJRHQHNfVhb4agp1fZQoaAZoCWgPQwgrTN9rCDo1wJSGlFKUaBVLsmgWR0BzY5yFPBSDdX2UKGgGaAloD0MIQQ3fwrpNTcCUhpRSlGgVS2ZoFkdAc2Rh3JPqLXV9lChoBmgJaA9DCF6FlJ9Ui0jAlIaUUpRoFUuEaBZHQHNklCkXUH91fZQoaAZoCWgPQwij5qvkY1cZwJSGlFKUaBVLumgWR0BzaByOq//OdX2UKGgGaAloD0MIOiAJ+3ZiT0CUhpRSlGgVTegDaBZHQHNoILsrupl1fZQoaAZoCWgPQwgi4Xt/g1lZwJSGlFKUaBVLpGgWR0BzamyOaOPvdX2UKGgGaAloD0MIoGzKFd71F8CUhpRSlGgVS25oFkdAc2slrM1TBXV9lChoBmgJaA9DCNE8gEV+vT3AlIaUUpRoFUuhaBZHQHNrck2P1ct1fZQoaAZoCWgPQwjd0mpI3ExSwJSGlFKUaBVLn2gWR0Bza6pm29csdX2UKGgGaAloD0MI5ljeVQ+Y9r+UhpRSlGgVS61oFkdAc3HuwX668XV9lChoBmgJaA9DCA1TW+og7xbAlIaUUpRoFUtlaBZHQHNza2jO9nN1fZQoaAZoCWgPQwgFoidlUicyQJSGlFKUaBVLd2gWR0BzdYXJo0yhdX2UKGgGaAloD0MI8YRefxJfIsCUhpRSlGgVS5ZoFkdAc3YHJtBOYnV9lChoBmgJaA9DCAgCZOjY90XAlIaUUpRoFUt+aBZHQHN+rEtNBWx1fZQoaAZoCWgPQwjWV1cFamEawJSGlFKUaBVLlWgWR0BzfxX4j8k2dX2UKGgGaAloD0MIzAwbZf1SQ8CUhpRSlGgVS/RoFkdAc4I6guh9LHV9lChoBmgJaA9DCBWOIJVit0LAlIaUUpRoFUuSaBZHQHODHTRYzSF1fZQoaAZoCWgPQwgwYwrWOOFDwJSGlFKUaBVLo2gWR0BzhJSXMQmNdX2UKGgGaAloD0MIpP0PsFbpRMCUhpRSlGgVS6RoFkdAc4YZ1V5rxnV9lChoBmgJaA9DCHzzGyYaEDPAlIaUUpRoFUvlaBZHQHOJg5imVJN1fZQoaAZoCWgPQwgddt8xPIYtQJSGlFKUaBVLdGgWR0BziYntv4ucdX2UKGgGaAloD0MIoIhFDDvsFcCUhpRSlGgVS4xoFkdAc44jT8YQ8XV9lChoBmgJaA9DCBCWsaGbG1nAlIaUUpRoFUupaBZHQHOQhdt2s7x1fZQoaAZoCWgPQwjSpuoe2Q5WQJSGlFKUaBVN6ANoFkdAc5Wp5eJHiHV9lChoBmgJaA9DCIuKOJ1kDzDAlIaUUpRoFUviaBZHQHOYmCqZML51fZQoaAZoCWgPQwjbUDHO34tewJSGlFKUaBVLYWgWR0BzmjKzRhMKdX2UKGgGaAloD0MI5iSUvhAqOsCUhpRSlGgVS4JoFkdAc5sPkq+ajXV9lChoBmgJaA9DCEChnj4CPUXAlIaUUpRoFUusaBZHQHOc7dnCfpV1fZQoaAZoCWgPQwh56LtbWfI1wJSGlFKUaBVLtmgWR0Bzni8scyWSdX2UKGgGaAloD0MIigYpeArFS8CUhpRSlGgVS7VoFkdAc6Hvjfek6HV9lChoBmgJaA9DCKJBCp5CzhtAlIaUUpRoFUuWaBZHQHPuaSPluFZ1fZQoaAZoCWgPQwifrBiuDkAVwJSGlFKUaBVLcmgWR0Bz7w/lhgE2dX2UKGgGaAloD0MImrFoOjsZGcCUhpRSlGgVS8loFkdAc/AMC9ytFXV9lChoBmgJaA9DCFySA3Y1KURAlIaUUpRoFUuOaBZHQHP75zT4L1F1fZQoaAZoCWgPQwjHvI44ZIPgv5SGlFKUaBVL+mgWR0Bz/CKEWZZ0dX2UKGgGaAloD0MIQzunWaBtHkCUhpRSlGgVS5RoFkdAc/9LPldTpHV9lChoBmgJaA9DCJZ4QNmUo0dAlIaUUpRoFUu2aBZHQHQANu1ndwh1fZQoaAZoCWgPQwh4mWGjrLcywJSGlFKUaBVLiGgWR0B0Abr/sE7odX2UKGgGaAloD0MI1H5rJ0qGT8CUhpRSlGgVS+hoFkdAdAHvZAY51nV9lChoBmgJaA9DCIjaNoyC2C9AlIaUUpRoFUt2aBZHQHQFUYoAn2J1fZQoaAZoCWgPQwgv3o/bLx8pQJSGlFKUaBVLi2gWR0B0CCvRqoIfdX2UKGgGaAloD0MIhLuzdtsVS8CUhpRSlGgVS8toFkdAdAymNipeeHV9lChoBmgJaA9DCMmqCDcZNRNAlIaUUpRoFU3oA2gWR0B0EYQjD8+BdX2UKGgGaAloD0MICeHRxhFTNcCUhpRSlGgVTegDaBZHQHQVtO2y9mJ1fZQoaAZoCWgPQwh8mL1sO+UjwJSGlFKUaBVL4mgWR0B0F3kKeCkHdX2UKGgGaAloD0MIpztPPGenOECUhpRSlGgVS4BoFkdAdBfFiay8jHV9lChoBmgJaA9DCFCLwcO0VzrAlIaUUpRoFUuaaBZHQHQYeumrKeV1fZQoaAZoCWgPQwisrG2Kx80yQJSGlFKUaBVLyWgWR0B0H/ZElVtGdX2UKGgGaAloD0MI81gzMsg7S8CUhpRSlGgVS7VoFkdAdCGGIsRQJ3V9lChoBmgJaA9DCP2/6siR0jtAlIaUUpRoFUumaBZHQHQiQJswco91fZQoaAZoCWgPQwi6aTNOQzQHwJSGlFKUaBVLhmgWR0B0I2fzz3AVdX2UKGgGaAloD0MIT8sPXOUzQUCUhpRSlGgVS9loFkdAdCdpjc2zfXV9lChoBmgJaA9DCJgYy/RLGkpAlIaUUpRoFU3oA2gWR0B0KJR3u/lAdX2UKGgGaAloD0MIPdS2YRTWRUCUhpRSlGgVS5xoFkdAdCrIQe3hGnV9lChoBmgJaA9DCB6jPPNyWFLAlIaUUpRoFUuOaBZHQHQsI7Rv3rV1fZQoaAZoCWgPQwh2OLpKd5coQJSGlFKUaBVL3mgWR0B0LQbLlmvodX2UKGgGaAloD0MIiIGufQG95z+UhpRSlGgVS65oFkdAdDJqjrRjSXV9lChoBmgJaA9DCF7zqs5qYS7AlIaUUpRoFUupaBZHQHQyaABkqc51fZQoaAZoCWgPQwinlq31RRo7wJSGlFKUaBVLf2gWR0B0NJxCIDYAdX2UKGgGaAloD0MIhqsDIO60TcCUhpRSlGgVS4xoFkdAdDVBClabF3V9lChoBmgJaA9DCGhCk8SS3jLAlIaUUpRoFUvGaBZHQHQ1yGetjkN1fZQoaAZoCWgPQwhwBn+/mLdMwJSGlFKUaBVLb2gWR0B0OIQcxTKldX2UKGgGaAloD0MIgJpattZnI0CUhpRSlGgVS35oFkdAdDmvovBacXV9lChoBmgJaA9DCPwaSYJwWTRAlIaUUpRoFUuWaBZHQHQ5uMMqjJx1fZQoaAZoCWgPQwjSxhFr8XU8QJSGlFKUaBVLdGgWR0B0PibgCOm0dX2UKGgGaAloD0MIRfXWwFYBJ8CUhpRSlGgVS3NoFkdAdEb+TNdJKHV9lChoBmgJaA9DCJPGaB1VwTPAlIaUUpRoFUvwaBZHQHRHWKhtcfN1fZQoaAZoCWgPQwgUz9kCQr1XwJSGlFKUaBVLnmgWR0B0TAfEGZ/kdX2UKGgGaAloD0MIEAcJUb4aS8CUhpRSlGgVS7VoFkdAdFA0Rvm5lXV9lChoBmgJaA9DCF9cqtIWmFzAlIaUUpRoFU35AWgWR0B0U4yqMm4RdX2UKGgGaAloD0MIHy+kw0OYD8CUhpRSlGgVS7hoFkdAdFR8B+4LC3V9lChoBmgJaA9DCOsfRDLk2B/AlIaUUpRoFU0DAWgWR0B0VtDPWxyGdX2UKGgGaAloD0MIX0VGB6TAasCUhpRSlGgVS7doFkdAdFhn4wh4dXV9lChoBmgJaA9DCD51rFJ6li1AlIaUUpRoFUu1aBZHQHRZekxh2GJ1fZQoaAZoCWgPQwi8lLpkHD5QQJSGlFKUaBVN6ANoFkdAdFt1klNUO3V9lChoBmgJaA9DCNF2TN2VNTBAlIaUUpRoFUvraBZHQHReVuzhP0t1fZQoaAZoCWgPQwg9RQ4RN+M9QJSGlFKUaBVLsmgWR0B0XklfJFLGdX2UKGgGaAloD0MIDLCPTl21UMCUhpRSlGgVS9loFkdAdF+eizsyBXV9lChoBmgJaA9DCC/9S1KZsEXAlIaUUpRoFUucaBZHQHRnKNQ0oBt1fZQoaAZoCWgPQwg3UOCdfHomQJSGlFKUaBVLlmgWR0B0aeIMz/IbdX2UKGgGaAloD0MIdZSD2QTUVMCUhpRSlGgVS3JoFkdAdGv2fTTfBXV9lChoBmgJaA9DCIGVQ4tsLzdAlIaUUpRoFUuLaBZHQHRtteUpuuR1fZQoaAZoCWgPQwj2Yign2qk9QJSGlFKUaBVL42gWR0B0bqXeFcptdX2UKGgGaAloD0MIpIl3gCfpNsCUhpRSlGgVS6JoFkdAdHOMewLVnXV9lChoBmgJaA9DCFqEYitopjhAlIaUUpRoFUuMaBZHQHR1sQiA2AJ1fZQoaAZoCWgPQwg6QDBHj+tHwJSGlFKUaBVL4WgWR0B0epVhkRSQdX2UKGgGaAloD0MIDat4I/NcM8CUhpRSlGgVS/JoFkdAdH7kWykbgnV9lChoBmgJaA9DCPW52or9KTNAlIaUUpRoFUuOaBZHQHSEiWZ7Xxx1fZQoaAZoCWgPQwiR8SiV8DQywJSGlFKUaBVL0mgWR0B0hSakRBeHdX2UKGgGaAloD0MI+62dKAkFMkCUhpRSlGgVS2loFkdAdIgw97ngYXV9lChoBmgJaA9DCBtjJ7wEKU3AlIaUUpRoFUuRaBZHQHSJ4l2NedF1fZQoaAZoCWgPQwj7zi9K0IVQwJSGlFKUaBVLnmgWR0B0in2Xb/OudX2UKGgGaAloD0MIea7vw0HKJcCUhpRSlGgVTQUBaBZHQHSN2DQJHAh1fZQoaAZoCWgPQwhKDW0ANvZKwJSGlFKUaBVLt2gWR0B0ksK2KEWZdX2UKGgGaAloD0MIeeV620yDQkCUhpRSlGgVTegDaBZHQHSUnpGFzuF1fZQoaAZoCWgPQwjQYFPnUeErwJSGlFKUaBVLk2gWR0B0m63PRiPRdX2UKGgGaAloD0MIGw5LAz/0S0CUhpRSlGgVTegDaBZHQHSb10cOskp1fZQoaAZoCWgPQwgIWoEhq+dLwJSGlFKUaBVLx2gWR0B0nErEtNBXdX2UKGgGaAloD0MI/oFy274HMMCUhpRSlGgVS65oFkdAdJyA0bcXWXVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 124,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19b94eceb2a92081734a1f5574a93a7994961ca4d7c940de5f0607d14cd9cb63
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84c3ab83a2a413b6eaaee89682cd8951e283ecb57dfa854ed120410155b0db2a
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (63.7 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -419.21919420065825, "std_reward": 81.93454661596289, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T20:00:25.793677"}