NikosKokkini
commited on
Commit
•
747d457
1
Parent(s):
3a6e763
push into the hub the trained PPO on LunarLander-v2 enviroment
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -419.22 +/- 81.93
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7ef391ddc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7ef391de50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7ef391dee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7ef391df70>", "_build": "<function ActorCriticPolicy._build at 0x7f7ef3922040>", "forward": "<function ActorCriticPolicy.forward at 0x7f7ef39220d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7ef3922160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7ef39221f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7ef3922280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7ef3922310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7ef39223a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7ef3922430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7ef391f270>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673380357045284876, "learning_rate": 3e-05, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+/3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2YfL4DlJ8/UpMMvZUKxL4K6jy8K3oLPQAAAAAAAAAAl0tAv9wNID/hA56+x+ADv91Oxb5q7RG9AAAAAAAAAAC8Jim/6zIYvoolFL5i7fU8/zs+O91onr0AAAAAAAAAAPrkIr+yioS+0xRivA2LTz2z/9y89KuLPQAAgD8AAIA/TYL6vSCbxD9fmQy/9vM8PCtUjz39L629AAAAAAAAAAAOn5y+EjnfPKhxsz3riBc8q68mvrVLOr4AAAAAAAAAAM2PrzzVWMQ/+quWPfYoGT1xUoe9XYUxvQAAAAAAAAAAOlN6vkxVFT8P45G8bY8Ov0OIFL3r9oa9AAAAAAAAAAAAKOK8obQPPqFxlT8ycmG/mK4yvm41KD8AAAAAAAAAACplXb4DnRm8befVvQnpKr1ei6k9bmsLPQAAAAAAAAAA1msEvzaYoz/BDRq//LDBvsE1tr4stxC+AAAAAAAAAAArchM/ifM9PTrTvj08AyK/qUdoPl3ktL0AAAAAAAAAAKqZ8z6sK/u9JhDfPWQkfb7EgEq+47LdvwAAAAAAAAAAgCrIPXWPkj9qgOQ+jpgOv3jyWL1G8BW9AAAAAAAAAACmEq49RXSSP7hdrD5p1wW/xPuOPZJwsj0AAAAAAAAAANrAyz3jUQo/GDcMPe8p/74xWTO9zbI2vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXvI/+bvDM0CUhpRSlIwBbJRLtIwBdJRHQHNfVhb4agp1fZQoaAZoCWgPQwgrTN9rCDo1wJSGlFKUaBVLsmgWR0BzY5yFPBSDdX2UKGgGaAloD0MIQQ3fwrpNTcCUhpRSlGgVS2ZoFkdAc2Rh3JPqLXV9lChoBmgJaA9DCF6FlJ9Ui0jAlIaUUpRoFUuEaBZHQHNklCkXUH91fZQoaAZoCWgPQwij5qvkY1cZwJSGlFKUaBVLumgWR0BzaByOq//OdX2UKGgGaAloD0MIOiAJ+3ZiT0CUhpRSlGgVTegDaBZHQHNoILsrupl1fZQoaAZoCWgPQwgi4Xt/g1lZwJSGlFKUaBVLpGgWR0BzamyOaOPvdX2UKGgGaAloD0MIoGzKFd71F8CUhpRSlGgVS25oFkdAc2slrM1TBXV9lChoBmgJaA9DCNE8gEV+vT3AlIaUUpRoFUuhaBZHQHNrck2P1ct1fZQoaAZoCWgPQwjd0mpI3ExSwJSGlFKUaBVLn2gWR0Bza6pm29csdX2UKGgGaAloD0MI5ljeVQ+Y9r+UhpRSlGgVS61oFkdAc3HuwX668XV9lChoBmgJaA9DCA1TW+og7xbAlIaUUpRoFUtlaBZHQHNza2jO9nN1fZQoaAZoCWgPQwgFoidlUicyQJSGlFKUaBVLd2gWR0BzdYXJo0yhdX2UKGgGaAloD0MI8YRefxJfIsCUhpRSlGgVS5ZoFkdAc3YHJtBOYnV9lChoBmgJaA9DCAgCZOjY90XAlIaUUpRoFUt+aBZHQHN+rEtNBWx1fZQoaAZoCWgPQwjWV1cFamEawJSGlFKUaBVLlWgWR0BzfxX4j8k2dX2UKGgGaAloD0MIzAwbZf1SQ8CUhpRSlGgVS/RoFkdAc4I6guh9LHV9lChoBmgJaA9DCBWOIJVit0LAlIaUUpRoFUuSaBZHQHODHTRYzSF1fZQoaAZoCWgPQwgwYwrWOOFDwJSGlFKUaBVLo2gWR0BzhJSXMQmNdX2UKGgGaAloD0MIpP0PsFbpRMCUhpRSlGgVS6RoFkdAc4YZ1V5rxnV9lChoBmgJaA9DCHzzGyYaEDPAlIaUUpRoFUvlaBZHQHOJg5imVJN1fZQoaAZoCWgPQwgddt8xPIYtQJSGlFKUaBVLdGgWR0BziYntv4ucdX2UKGgGaAloD0MIoIhFDDvsFcCUhpRSlGgVS4xoFkdAc44jT8YQ8XV9lChoBmgJaA9DCBCWsaGbG1nAlIaUUpRoFUupaBZHQHOQhdt2s7x1fZQoaAZoCWgPQwjSpuoe2Q5WQJSGlFKUaBVN6ANoFkdAc5Wp5eJHiHV9lChoBmgJaA9DCIuKOJ1kDzDAlIaUUpRoFUviaBZHQHOYmCqZML51fZQoaAZoCWgPQwjbUDHO34tewJSGlFKUaBVLYWgWR0BzmjKzRhMKdX2UKGgGaAloD0MI5iSUvhAqOsCUhpRSlGgVS4JoFkdAc5sPkq+ajXV9lChoBmgJaA9DCEChnj4CPUXAlIaUUpRoFUusaBZHQHOc7dnCfpV1fZQoaAZoCWgPQwh56LtbWfI1wJSGlFKUaBVLtmgWR0Bzni8scyWSdX2UKGgGaAloD0MIigYpeArFS8CUhpRSlGgVS7VoFkdAc6Hvjfek6HV9lChoBmgJaA9DCKJBCp5CzhtAlIaUUpRoFUuWaBZHQHPuaSPluFZ1fZQoaAZoCWgPQwifrBiuDkAVwJSGlFKUaBVLcmgWR0Bz7w/lhgE2dX2UKGgGaAloD0MImrFoOjsZGcCUhpRSlGgVS8loFkdAc/AMC9ytFXV9lChoBmgJaA9DCFySA3Y1KURAlIaUUpRoFUuOaBZHQHP75zT4L1F1fZQoaAZoCWgPQwjHvI44ZIPgv5SGlFKUaBVL+mgWR0Bz/CKEWZZ0dX2UKGgGaAloD0MIQzunWaBtHkCUhpRSlGgVS5RoFkdAc/9LPldTpHV9lChoBmgJaA9DCJZ4QNmUo0dAlIaUUpRoFUu2aBZHQHQANu1ndwh1fZQoaAZoCWgPQwh4mWGjrLcywJSGlFKUaBVLiGgWR0B0Abr/sE7odX2UKGgGaAloD0MI1H5rJ0qGT8CUhpRSlGgVS+hoFkdAdAHvZAY51nV9lChoBmgJaA9DCIjaNoyC2C9AlIaUUpRoFUt2aBZHQHQFUYoAn2J1fZQoaAZoCWgPQwgv3o/bLx8pQJSGlFKUaBVLi2gWR0B0CCvRqoIfdX2UKGgGaAloD0MIhLuzdtsVS8CUhpRSlGgVS8toFkdAdAymNipeeHV9lChoBmgJaA9DCMmqCDcZNRNAlIaUUpRoFU3oA2gWR0B0EYQjD8+BdX2UKGgGaAloD0MICeHRxhFTNcCUhpRSlGgVTegDaBZHQHQVtO2y9mJ1fZQoaAZoCWgPQwh8mL1sO+UjwJSGlFKUaBVL4mgWR0B0F3kKeCkHdX2UKGgGaAloD0MIpztPPGenOECUhpRSlGgVS4BoFkdAdBfFiay8jHV9lChoBmgJaA9DCFCLwcO0VzrAlIaUUpRoFUuaaBZHQHQYeumrKeV1fZQoaAZoCWgPQwisrG2Kx80yQJSGlFKUaBVLyWgWR0B0H/ZElVtGdX2UKGgGaAloD0MI81gzMsg7S8CUhpRSlGgVS7VoFkdAdCGGIsRQJ3V9lChoBmgJaA9DCP2/6siR0jtAlIaUUpRoFUumaBZHQHQiQJswco91fZQoaAZoCWgPQwi6aTNOQzQHwJSGlFKUaBVLhmgWR0B0I2fzz3AVdX2UKGgGaAloD0MIT8sPXOUzQUCUhpRSlGgVS9loFkdAdCdpjc2zfXV9lChoBmgJaA9DCJgYy/RLGkpAlIaUUpRoFU3oA2gWR0B0KJR3u/lAdX2UKGgGaAloD0MIPdS2YRTWRUCUhpRSlGgVS5xoFkdAdCrIQe3hGnV9lChoBmgJaA9DCB6jPPNyWFLAlIaUUpRoFUuOaBZHQHQsI7Rv3rV1fZQoaAZoCWgPQwh2OLpKd5coQJSGlFKUaBVL3mgWR0B0LQbLlmvodX2UKGgGaAloD0MIiIGufQG95z+UhpRSlGgVS65oFkdAdDJqjrRjSXV9lChoBmgJaA9DCF7zqs5qYS7AlIaUUpRoFUupaBZHQHQyaABkqc51fZQoaAZoCWgPQwinlq31RRo7wJSGlFKUaBVLf2gWR0B0NJxCIDYAdX2UKGgGaAloD0MIhqsDIO60TcCUhpRSlGgVS4xoFkdAdDVBClabF3V9lChoBmgJaA9DCGhCk8SS3jLAlIaUUpRoFUvGaBZHQHQ1yGetjkN1fZQoaAZoCWgPQwhwBn+/mLdMwJSGlFKUaBVLb2gWR0B0OIQcxTKldX2UKGgGaAloD0MIgJpattZnI0CUhpRSlGgVS35oFkdAdDmvovBacXV9lChoBmgJaA9DCPwaSYJwWTRAlIaUUpRoFUuWaBZHQHQ5uMMqjJx1fZQoaAZoCWgPQwjSxhFr8XU8QJSGlFKUaBVLdGgWR0B0PibgCOm0dX2UKGgGaAloD0MIRfXWwFYBJ8CUhpRSlGgVS3NoFkdAdEb+TNdJKHV9lChoBmgJaA9DCJPGaB1VwTPAlIaUUpRoFUvwaBZHQHRHWKhtcfN1fZQoaAZoCWgPQwgUz9kCQr1XwJSGlFKUaBVLnmgWR0B0TAfEGZ/kdX2UKGgGaAloD0MIEAcJUb4aS8CUhpRSlGgVS7VoFkdAdFA0Rvm5lXV9lChoBmgJaA9DCF9cqtIWmFzAlIaUUpRoFU35AWgWR0B0U4yqMm4RdX2UKGgGaAloD0MIHy+kw0OYD8CUhpRSlGgVS7hoFkdAdFR8B+4LC3V9lChoBmgJaA9DCOsfRDLk2B/AlIaUUpRoFU0DAWgWR0B0VtDPWxyGdX2UKGgGaAloD0MIX0VGB6TAasCUhpRSlGgVS7doFkdAdFhn4wh4dXV9lChoBmgJaA9DCD51rFJ6li1AlIaUUpRoFUu1aBZHQHRZekxh2GJ1fZQoaAZoCWgPQwi8lLpkHD5QQJSGlFKUaBVN6ANoFkdAdFt1klNUO3V9lChoBmgJaA9DCNF2TN2VNTBAlIaUUpRoFUvraBZHQHReVuzhP0t1fZQoaAZoCWgPQwg9RQ4RN+M9QJSGlFKUaBVLsmgWR0B0XklfJFLGdX2UKGgGaAloD0MIDLCPTl21UMCUhpRSlGgVS9loFkdAdF+eizsyBXV9lChoBmgJaA9DCC/9S1KZsEXAlIaUUpRoFUucaBZHQHRnKNQ0oBt1fZQoaAZoCWgPQwg3UOCdfHomQJSGlFKUaBVLlmgWR0B0aeIMz/IbdX2UKGgGaAloD0MIdZSD2QTUVMCUhpRSlGgVS3JoFkdAdGv2fTTfBXV9lChoBmgJaA9DCIGVQ4tsLzdAlIaUUpRoFUuLaBZHQHRtteUpuuR1fZQoaAZoCWgPQwj2Yign2qk9QJSGlFKUaBVL42gWR0B0bqXeFcptdX2UKGgGaAloD0MIpIl3gCfpNsCUhpRSlGgVS6JoFkdAdHOMewLVnXV9lChoBmgJaA9DCFqEYitopjhAlIaUUpRoFUuMaBZHQHR1sQiA2AJ1fZQoaAZoCWgPQwg6QDBHj+tHwJSGlFKUaBVL4WgWR0B0epVhkRSQdX2UKGgGaAloD0MIDat4I/NcM8CUhpRSlGgVS/JoFkdAdH7kWykbgnV9lChoBmgJaA9DCPW52or9KTNAlIaUUpRoFUuOaBZHQHSEiWZ7Xxx1fZQoaAZoCWgPQwiR8SiV8DQywJSGlFKUaBVL0mgWR0B0hSakRBeHdX2UKGgGaAloD0MI+62dKAkFMkCUhpRSlGgVS2loFkdAdIgw97ngYXV9lChoBmgJaA9DCBtjJ7wEKU3AlIaUUpRoFUuRaBZHQHSJ4l2NedF1fZQoaAZoCWgPQwj7zi9K0IVQwJSGlFKUaBVLnmgWR0B0in2Xb/OudX2UKGgGaAloD0MIea7vw0HKJcCUhpRSlGgVTQUBaBZHQHSN2DQJHAh1fZQoaAZoCWgPQwhKDW0ANvZKwJSGlFKUaBVLt2gWR0B0ksK2KEWZdX2UKGgGaAloD0MIeeV620yDQkCUhpRSlGgVTegDaBZHQHSUnpGFzuF1fZQoaAZoCWgPQwjQYFPnUeErwJSGlFKUaBVLk2gWR0B0m63PRiPRdX2UKGgGaAloD0MIGw5LAz/0S0CUhpRSlGgVTegDaBZHQHSb10cOskp1fZQoaAZoCWgPQwgIWoEhq+dLwJSGlFKUaBVLx2gWR0B0nErEtNBXdX2UKGgGaAloD0MI/oFy274HMMCUhpRSlGgVS65oFkdAdJyA0bcXWXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3915ffc3515c9a827bccded7333ebfafd9dc12c3cd3358fed5ed7da35aabde1b
|
3 |
+
size 147305
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7ef391ddc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7ef391de50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7ef391dee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7ef391df70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7ef3922040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7ef39220d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7ef3922160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7ef39221f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7ef3922280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7ef3922310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7ef39223a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7ef3922430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f7ef391f270>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 507904,
|
47 |
+
"_total_timesteps": 500000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673380357045284876,
|
52 |
+
"learning_rate": 3e-05,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+/3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2YfL4DlJ8/UpMMvZUKxL4K6jy8K3oLPQAAAAAAAAAAl0tAv9wNID/hA56+x+ADv91Oxb5q7RG9AAAAAAAAAAC8Jim/6zIYvoolFL5i7fU8/zs+O91onr0AAAAAAAAAAPrkIr+yioS+0xRivA2LTz2z/9y89KuLPQAAgD8AAIA/TYL6vSCbxD9fmQy/9vM8PCtUjz39L629AAAAAAAAAAAOn5y+EjnfPKhxsz3riBc8q68mvrVLOr4AAAAAAAAAAM2PrzzVWMQ/+quWPfYoGT1xUoe9XYUxvQAAAAAAAAAAOlN6vkxVFT8P45G8bY8Ov0OIFL3r9oa9AAAAAAAAAAAAKOK8obQPPqFxlT8ycmG/mK4yvm41KD8AAAAAAAAAACplXb4DnRm8befVvQnpKr1ei6k9bmsLPQAAAAAAAAAA1msEvzaYoz/BDRq//LDBvsE1tr4stxC+AAAAAAAAAAArchM/ifM9PTrTvj08AyK/qUdoPl3ktL0AAAAAAAAAAKqZ8z6sK/u9JhDfPWQkfb7EgEq+47LdvwAAAAAAAAAAgCrIPXWPkj9qgOQ+jpgOv3jyWL1G8BW9AAAAAAAAAACmEq49RXSSP7hdrD5p1wW/xPuOPZJwsj0AAAAAAAAAANrAyz3jUQo/GDcMPe8p/74xWTO9zbI2vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXvI/+bvDM0CUhpRSlIwBbJRLtIwBdJRHQHNfVhb4agp1fZQoaAZoCWgPQwgrTN9rCDo1wJSGlFKUaBVLsmgWR0BzY5yFPBSDdX2UKGgGaAloD0MIQQ3fwrpNTcCUhpRSlGgVS2ZoFkdAc2Rh3JPqLXV9lChoBmgJaA9DCF6FlJ9Ui0jAlIaUUpRoFUuEaBZHQHNklCkXUH91fZQoaAZoCWgPQwij5qvkY1cZwJSGlFKUaBVLumgWR0BzaByOq//OdX2UKGgGaAloD0MIOiAJ+3ZiT0CUhpRSlGgVTegDaBZHQHNoILsrupl1fZQoaAZoCWgPQwgi4Xt/g1lZwJSGlFKUaBVLpGgWR0BzamyOaOPvdX2UKGgGaAloD0MIoGzKFd71F8CUhpRSlGgVS25oFkdAc2slrM1TBXV9lChoBmgJaA9DCNE8gEV+vT3AlIaUUpRoFUuhaBZHQHNrck2P1ct1fZQoaAZoCWgPQwjd0mpI3ExSwJSGlFKUaBVLn2gWR0Bza6pm29csdX2UKGgGaAloD0MI5ljeVQ+Y9r+UhpRSlGgVS61oFkdAc3HuwX668XV9lChoBmgJaA9DCA1TW+og7xbAlIaUUpRoFUtlaBZHQHNza2jO9nN1fZQoaAZoCWgPQwgFoidlUicyQJSGlFKUaBVLd2gWR0BzdYXJo0yhdX2UKGgGaAloD0MI8YRefxJfIsCUhpRSlGgVS5ZoFkdAc3YHJtBOYnV9lChoBmgJaA9DCAgCZOjY90XAlIaUUpRoFUt+aBZHQHN+rEtNBWx1fZQoaAZoCWgPQwjWV1cFamEawJSGlFKUaBVLlWgWR0BzfxX4j8k2dX2UKGgGaAloD0MIzAwbZf1SQ8CUhpRSlGgVS/RoFkdAc4I6guh9LHV9lChoBmgJaA9DCBWOIJVit0LAlIaUUpRoFUuSaBZHQHODHTRYzSF1fZQoaAZoCWgPQwgwYwrWOOFDwJSGlFKUaBVLo2gWR0BzhJSXMQmNdX2UKGgGaAloD0MIpP0PsFbpRMCUhpRSlGgVS6RoFkdAc4YZ1V5rxnV9lChoBmgJaA9DCHzzGyYaEDPAlIaUUpRoFUvlaBZHQHOJg5imVJN1fZQoaAZoCWgPQwgddt8xPIYtQJSGlFKUaBVLdGgWR0BziYntv4ucdX2UKGgGaAloD0MIoIhFDDvsFcCUhpRSlGgVS4xoFkdAc44jT8YQ8XV9lChoBmgJaA9DCBCWsaGbG1nAlIaUUpRoFUupaBZHQHOQhdt2s7x1fZQoaAZoCWgPQwjSpuoe2Q5WQJSGlFKUaBVN6ANoFkdAc5Wp5eJHiHV9lChoBmgJaA9DCIuKOJ1kDzDAlIaUUpRoFUviaBZHQHOYmCqZML51fZQoaAZoCWgPQwjbUDHO34tewJSGlFKUaBVLYWgWR0BzmjKzRhMKdX2UKGgGaAloD0MI5iSUvhAqOsCUhpRSlGgVS4JoFkdAc5sPkq+ajXV9lChoBmgJaA9DCEChnj4CPUXAlIaUUpRoFUusaBZHQHOc7dnCfpV1fZQoaAZoCWgPQwh56LtbWfI1wJSGlFKUaBVLtmgWR0Bzni8scyWSdX2UKGgGaAloD0MIigYpeArFS8CUhpRSlGgVS7VoFkdAc6Hvjfek6HV9lChoBmgJaA9DCKJBCp5CzhtAlIaUUpRoFUuWaBZHQHPuaSPluFZ1fZQoaAZoCWgPQwifrBiuDkAVwJSGlFKUaBVLcmgWR0Bz7w/lhgE2dX2UKGgGaAloD0MImrFoOjsZGcCUhpRSlGgVS8loFkdAc/AMC9ytFXV9lChoBmgJaA9DCFySA3Y1KURAlIaUUpRoFUuOaBZHQHP75zT4L1F1fZQoaAZoCWgPQwjHvI44ZIPgv5SGlFKUaBVL+mgWR0Bz/CKEWZZ0dX2UKGgGaAloD0MIQzunWaBtHkCUhpRSlGgVS5RoFkdAc/9LPldTpHV9lChoBmgJaA9DCJZ4QNmUo0dAlIaUUpRoFUu2aBZHQHQANu1ndwh1fZQoaAZoCWgPQwh4mWGjrLcywJSGlFKUaBVLiGgWR0B0Abr/sE7odX2UKGgGaAloD0MI1H5rJ0qGT8CUhpRSlGgVS+hoFkdAdAHvZAY51nV9lChoBmgJaA9DCIjaNoyC2C9AlIaUUpRoFUt2aBZHQHQFUYoAn2J1fZQoaAZoCWgPQwgv3o/bLx8pQJSGlFKUaBVLi2gWR0B0CCvRqoIfdX2UKGgGaAloD0MIhLuzdtsVS8CUhpRSlGgVS8toFkdAdAymNipeeHV9lChoBmgJaA9DCMmqCDcZNRNAlIaUUpRoFU3oA2gWR0B0EYQjD8+BdX2UKGgGaAloD0MICeHRxhFTNcCUhpRSlGgVTegDaBZHQHQVtO2y9mJ1fZQoaAZoCWgPQwh8mL1sO+UjwJSGlFKUaBVL4mgWR0B0F3kKeCkHdX2UKGgGaAloD0MIpztPPGenOECUhpRSlGgVS4BoFkdAdBfFiay8jHV9lChoBmgJaA9DCFCLwcO0VzrAlIaUUpRoFUuaaBZHQHQYeumrKeV1fZQoaAZoCWgPQwisrG2Kx80yQJSGlFKUaBVLyWgWR0B0H/ZElVtGdX2UKGgGaAloD0MI81gzMsg7S8CUhpRSlGgVS7VoFkdAdCGGIsRQJ3V9lChoBmgJaA9DCP2/6siR0jtAlIaUUpRoFUumaBZHQHQiQJswco91fZQoaAZoCWgPQwi6aTNOQzQHwJSGlFKUaBVLhmgWR0B0I2fzz3AVdX2UKGgGaAloD0MIT8sPXOUzQUCUhpRSlGgVS9loFkdAdCdpjc2zfXV9lChoBmgJaA9DCJgYy/RLGkpAlIaUUpRoFU3oA2gWR0B0KJR3u/lAdX2UKGgGaAloD0MIPdS2YRTWRUCUhpRSlGgVS5xoFkdAdCrIQe3hGnV9lChoBmgJaA9DCB6jPPNyWFLAlIaUUpRoFUuOaBZHQHQsI7Rv3rV1fZQoaAZoCWgPQwh2OLpKd5coQJSGlFKUaBVL3mgWR0B0LQbLlmvodX2UKGgGaAloD0MIiIGufQG95z+UhpRSlGgVS65oFkdAdDJqjrRjSXV9lChoBmgJaA9DCF7zqs5qYS7AlIaUUpRoFUupaBZHQHQyaABkqc51fZQoaAZoCWgPQwinlq31RRo7wJSGlFKUaBVLf2gWR0B0NJxCIDYAdX2UKGgGaAloD0MIhqsDIO60TcCUhpRSlGgVS4xoFkdAdDVBClabF3V9lChoBmgJaA9DCGhCk8SS3jLAlIaUUpRoFUvGaBZHQHQ1yGetjkN1fZQoaAZoCWgPQwhwBn+/mLdMwJSGlFKUaBVLb2gWR0B0OIQcxTKldX2UKGgGaAloD0MIgJpattZnI0CUhpRSlGgVS35oFkdAdDmvovBacXV9lChoBmgJaA9DCPwaSYJwWTRAlIaUUpRoFUuWaBZHQHQ5uMMqjJx1fZQoaAZoCWgPQwjSxhFr8XU8QJSGlFKUaBVLdGgWR0B0PibgCOm0dX2UKGgGaAloD0MIRfXWwFYBJ8CUhpRSlGgVS3NoFkdAdEb+TNdJKHV9lChoBmgJaA9DCJPGaB1VwTPAlIaUUpRoFUvwaBZHQHRHWKhtcfN1fZQoaAZoCWgPQwgUz9kCQr1XwJSGlFKUaBVLnmgWR0B0TAfEGZ/kdX2UKGgGaAloD0MIEAcJUb4aS8CUhpRSlGgVS7VoFkdAdFA0Rvm5lXV9lChoBmgJaA9DCF9cqtIWmFzAlIaUUpRoFU35AWgWR0B0U4yqMm4RdX2UKGgGaAloD0MIHy+kw0OYD8CUhpRSlGgVS7hoFkdAdFR8B+4LC3V9lChoBmgJaA9DCOsfRDLk2B/AlIaUUpRoFU0DAWgWR0B0VtDPWxyGdX2UKGgGaAloD0MIX0VGB6TAasCUhpRSlGgVS7doFkdAdFhn4wh4dXV9lChoBmgJaA9DCD51rFJ6li1AlIaUUpRoFUu1aBZHQHRZekxh2GJ1fZQoaAZoCWgPQwi8lLpkHD5QQJSGlFKUaBVN6ANoFkdAdFt1klNUO3V9lChoBmgJaA9DCNF2TN2VNTBAlIaUUpRoFUvraBZHQHReVuzhP0t1fZQoaAZoCWgPQwg9RQ4RN+M9QJSGlFKUaBVLsmgWR0B0XklfJFLGdX2UKGgGaAloD0MIDLCPTl21UMCUhpRSlGgVS9loFkdAdF+eizsyBXV9lChoBmgJaA9DCC/9S1KZsEXAlIaUUpRoFUucaBZHQHRnKNQ0oBt1fZQoaAZoCWgPQwg3UOCdfHomQJSGlFKUaBVLlmgWR0B0aeIMz/IbdX2UKGgGaAloD0MIdZSD2QTUVMCUhpRSlGgVS3JoFkdAdGv2fTTfBXV9lChoBmgJaA9DCIGVQ4tsLzdAlIaUUpRoFUuLaBZHQHRtteUpuuR1fZQoaAZoCWgPQwj2Yign2qk9QJSGlFKUaBVL42gWR0B0bqXeFcptdX2UKGgGaAloD0MIpIl3gCfpNsCUhpRSlGgVS6JoFkdAdHOMewLVnXV9lChoBmgJaA9DCFqEYitopjhAlIaUUpRoFUuMaBZHQHR1sQiA2AJ1fZQoaAZoCWgPQwg6QDBHj+tHwJSGlFKUaBVL4WgWR0B0epVhkRSQdX2UKGgGaAloD0MIDat4I/NcM8CUhpRSlGgVS/JoFkdAdH7kWykbgnV9lChoBmgJaA9DCPW52or9KTNAlIaUUpRoFUuOaBZHQHSEiWZ7Xxx1fZQoaAZoCWgPQwiR8SiV8DQywJSGlFKUaBVL0mgWR0B0hSakRBeHdX2UKGgGaAloD0MI+62dKAkFMkCUhpRSlGgVS2loFkdAdIgw97ngYXV9lChoBmgJaA9DCBtjJ7wEKU3AlIaUUpRoFUuRaBZHQHSJ4l2NedF1fZQoaAZoCWgPQwj7zi9K0IVQwJSGlFKUaBVLnmgWR0B0in2Xb/OudX2UKGgGaAloD0MIea7vw0HKJcCUhpRSlGgVTQUBaBZHQHSN2DQJHAh1fZQoaAZoCWgPQwhKDW0ANvZKwJSGlFKUaBVLt2gWR0B0ksK2KEWZdX2UKGgGaAloD0MIeeV620yDQkCUhpRSlGgVTegDaBZHQHSUnpGFzuF1fZQoaAZoCWgPQwjQYFPnUeErwJSGlFKUaBVLk2gWR0B0m63PRiPRdX2UKGgGaAloD0MIGw5LAz/0S0CUhpRSlGgVTegDaBZHQHSb10cOskp1fZQoaAZoCWgPQwgIWoEhq+dLwJSGlFKUaBVLx2gWR0B0nErEtNBXdX2UKGgGaAloD0MI/oFy274HMMCUhpRSlGgVS65oFkdAdJyA0bcXWXVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 124,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19b94eceb2a92081734a1f5574a93a7994961ca4d7c940de5f0607d14cd9cb63
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84c3ab83a2a413b6eaaee89682cd8951e283ecb57dfa854ed120410155b0db2a
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (63.7 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -419.21919420065825, "std_reward": 81.93454661596289, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T20:00:25.793677"}
|