File size: 3,199 Bytes
bbd9c83 4cd1b29 bbd9c83 dbc314a 0f8496d dbc314a 0f8496d dbc314a 0f8496d dbc314a 0f8496d dbc314a 0f8496d dbc314a 0f8496d dbc314a 0f8496d dbc314a 0f8496d dbc314a 0f8496d dbc314a 0f8496d dbc314a 0f8496d bbd9c83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
datasets:
- "google/DOCCI"
language:
- en
library_name: peft
tags:
- florence-2
- lora
- adapter
- image-captioning
- peft
model-index:
- name: Florence-2-DOCCI-FT
results:
- task:
type: image-to-text
name: Image Captioning
dataset:
name: foundation-multimodal-models/DetailCaps-4870
type: other
metrics:
- type: meteor
value: 0.261
- type: bleu
value: 0.208
- type: cider
value: 0.072
- type: capture
value: 0.565
- type: rouge-l
value: 0.280
---
# Florence-2 DOCCI-FT LoRA Adapter
This repository contains a LoRA adapter trained on google/docci for the Florence-2-base-FT model. It's designed to enhance the model's captioning capabilities, providing more detailed captions.
## Usage
To use this LoRA adapter, you'll need to load it along with the Florence-2-base model using the PEFT library. Here's an example of how to use it:
```python
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from peft import PeftModel, PeftConfig
import requests
def caption(image):
base_model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
prompt = "<MORE_DETAILED_CAPTION>"
adapter_name = "NikshepShetty/Florence-2-DOCCI-FT"
model = PeftModel.from_pretrained(base_model, adapter_name, trust_remote_code=True)
inputs = processor(text=prompt, images=image, return_tensors="pt")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
do_sample=False,
num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task="<MORE_DETAILED_CAPTION>", image_size=(image.width, image.height))
print(parsed_answer)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
caption(image)
```
This code demonstrates how to:
1. Load the base Florence-2 model
2. Load the LoRA adapter
3. Process an image and generate a detailed caption
Note: Make sure you have the required libraries installed: transformers, peft, einops, flash_attn, timm, Pillow, and requests.
## Evaluation results
Our LoRA adapter shows significant improvements over the base Florence-2 model across all metrics for MORE_DETAILED_CAPTION tag:
| Metric | Base Model | Adapted Model | Improvement |
|---------|------------|---------------|-------------|
| METEOR | 0.205 | 0.261 | +27.3% |
| BLEU | 0.124 | 0.208 | +67.7% |
| CIDEr | 0.023 | 0.072 | +213.0% |
| CAPTURE | 0.529 | 0.565 | +6.8% |
| ROUGE-L | 0.265 | 0.280 | +5.7% |
These results demonstrate that our LoRA adapter significantly enhances the image captioning capabilities of the Florence-2 base model, particularly in generating more detailed and accurate captions. |