Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: pytorch
|
3 |
+
tags:
|
4 |
+
- anomaly-detection
|
5 |
+
- autoencoder
|
6 |
+
- plant-detection
|
7 |
+
- computer-vision
|
8 |
+
- pytorch-lightning
|
9 |
+
datasets:
|
10 |
+
- custom-plant-dataset
|
11 |
+
metrics:
|
12 |
+
- reconstruction-error
|
13 |
+
- threshold-based-classification
|
14 |
+
pipeline_tag: image-classification
|
15 |
+
---
|
16 |
+
|
17 |
+
# plant-detector
|
18 |
+
|
19 |
+
## Model Description
|
20 |
+
|
21 |
+
Convolutional Autoencoder for plant anomaly detection
|
22 |
+
|
23 |
+
This is a Convolutional Autoencoder (CAE) trained for plant anomaly detection. The model learns to reconstruct plant images and detects anomalies based on reconstruction error.
|
24 |
+
|
25 |
+
## Model Details
|
26 |
+
|
27 |
+
- **Model Type**: Convolutional Autoencoder
|
28 |
+
- **Framework**: PyTorch Lightning
|
29 |
+
- **Task**: Anomaly Detection / Plant Classification
|
30 |
+
- **Input**: RGB images (224x224)
|
31 |
+
- **Output**: Reconstruction + anomaly score
|
32 |
+
|
33 |
+
## Training Details
|
34 |
+
|
35 |
+
- **Architecture**: Encoder-Decoder with skip connections
|
36 |
+
- **Loss Function**: Mean Squared Error (MSE)
|
37 |
+
- **Optimizer**: AdamW
|
38 |
+
- **Learning Rate**: 0.0001
|
39 |
+
- **Batch Size**: 32
|
40 |
+
- **Epochs**: N/A
|
41 |
+
- **Dataset Size**: N/A images
|
42 |
+
|
43 |
+
## Performance Metrics
|
44 |
+
|
45 |
+
- **Validation Loss**: N/A
|
46 |
+
- **Threshold**: 0.5687
|
47 |
+
- **Mean Reconstruction Error**: N/A
|
48 |
+
- **Std Reconstruction Error**: N/A
|
49 |
+
- **Anomaly Rate**: N/A
|
50 |
+
|
51 |
+
## Normalization Statistics
|
52 |
+
|
53 |
+
The model expects input images to be normalized with:
|
54 |
+
- **Mean**: [0.4682, 0.4865, 0.3050]
|
55 |
+
- **Std**: [0.2064, 0.1995, 0.1961]
|
56 |
+
|
57 |
+
## Usage
|
58 |
+
|
59 |
+
### PyTorch Lightning Checkpoint
|
60 |
+
|
61 |
+
```python
|
62 |
+
from annomallyDet.models.lit_models.lit_cae import LitCAE
|
63 |
+
|
64 |
+
# Load the model
|
65 |
+
model = LitCAE.load_from_checkpoint("plant_anomaly_detector.ckpt")
|
66 |
+
model.eval()
|
67 |
+
|
68 |
+
# Make prediction
|
69 |
+
reconstruction_error = model.get_reconstruction_error(input_tensor)
|
70 |
+
is_anomaly = reconstruction_error > 0.5687
|
71 |
+
```
|
72 |
+
|
73 |
+
### Mobile Deployment (TorchScript Lite)
|
74 |
+
|
75 |
+
```python
|
76 |
+
import torch
|
77 |
+
|
78 |
+
# Load mobile model
|
79 |
+
model = torch.jit.load("plant_anomaly_detector.ptl")
|
80 |
+
reconstruction = model(input_tensor)
|
81 |
+
|
82 |
+
# Calculate reconstruction error
|
83 |
+
error = torch.mean((input_tensor - reconstruction) ** 2)
|
84 |
+
is_anomaly = error > 0.5687
|
85 |
+
```
|
86 |
+
|
87 |
+
### Flutter Integration
|
88 |
+
|
89 |
+
See the included `flutter_integration_example.dart` for complete Flutter app integration using `flutter_pytorch_lite`.
|
90 |
+
|
91 |
+
## Files Included
|
92 |
+
|
93 |
+
- `plant_anomaly_detector.ckpt`: PyTorch Lightning checkpoint
|
94 |
+
- `plant_anomaly_detector.ptl`: TorchScript Lite model for mobile deployment
|
95 |
+
- `config.json`: Model configuration and metadata
|
96 |
+
- `flutter_integration_example.dart`: Flutter integration example
|
97 |
+
- `normalization_stats.json`: Dataset normalization statistics
|
98 |
+
|
99 |
+
## Model Architecture
|
100 |
+
|
101 |
+
```
|
102 |
+
Input (3, 224, 224)
|
103 |
+
β
|
104 |
+
Encoder: Conv2d β BatchNorm β LeakyReLU β Dropout
|
105 |
+
[32, 64, 128, 256] channels
|
106 |
+
β
|
107 |
+
Latent Space (128 dimensions)
|
108 |
+
β
|
109 |
+
Decoder: ConvTranspose2d β BatchNorm β LeakyReLU β Dropout
|
110 |
+
[256, 128, 64, 32] channels
|
111 |
+
β
|
112 |
+
Output (3, 224, 224)
|
113 |
+
```
|
114 |
+
|
115 |
+
## Anomaly Detection Logic
|
116 |
+
|
117 |
+
1. **Training**: Model learns to reconstruct normal plant images
|
118 |
+
2. **Inference**: Calculate reconstruction error (MSE)
|
119 |
+
3. **Decision**: If error > threshold β Anomaly (not a plant)
|
120 |
+
4. **Confidence**: Distance from threshold indicates confidence
|
121 |
+
|
122 |
+
## Limitations
|
123 |
+
|
124 |
+
- Trained specifically on plant images
|
125 |
+
- Performance depends on similarity to training data
|
126 |
+
- May struggle with novel plant species not in training set
|
127 |
+
- Threshold may need adjustment for different use cases
|
128 |
+
|
129 |
+
## Citation
|
130 |
+
|
131 |
+
```bibtex
|
132 |
+
@misc{plant_anomaly_detector,
|
133 |
+
title={Plant Anomaly Detection using Convolutional Autoencoder},
|
134 |
+
author={Your Name},
|
135 |
+
year={2024},
|
136 |
+
howpublished={\url{https://huggingface.co/YOUR_USERNAME/plant-detector}},
|
137 |
+
}
|
138 |
+
```
|
139 |
+
|
140 |
+
## License
|
141 |
+
|
142 |
+
[Specify your license here]
|