Niraya666 commited on
Commit
ecc9a65
1 Parent(s): 114cf1c

./wmc_v2_vit_base_wm811k_cls_contra_learning_0916_9cls

Browse files
Files changed (4) hide show
  1. README.md +96 -0
  2. config.json +47 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/vit-base-patch16-224
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ model-index:
13
+ - name: wmc_v2_vit_base_wm811k_cls_contra_learning_0916_9cls
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # wmc_v2_vit_base_wm811k_cls_contra_learning_0916_9cls
21
+
22
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1013
25
+ - Accuracy: 0.9670
26
+ - Precision: 0.9209
27
+ - Recall: 0.8649
28
+ - F1: 0.8808
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 128
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 3
56
+ - mixed_precision_training: Native AMP
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
61
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
62
+ | 0.3763 | 0.1079 | 100 | 0.9646 | 0.6825 | 0.1404 | 0.1291 | 0.1179 |
63
+ | 0.2651 | 0.2158 | 200 | 0.6134 | 0.7668 | 0.3945 | 0.2648 | 0.2505 |
64
+ | 0.1556 | 0.3237 | 300 | 0.2849 | 0.9183 | 0.6474 | 0.5500 | 0.5700 |
65
+ | 0.1999 | 0.4316 | 400 | 0.2655 | 0.9021 | 0.7646 | 0.5318 | 0.5426 |
66
+ | 0.1746 | 0.5395 | 500 | 0.2362 | 0.9086 | 0.7687 | 0.6036 | 0.6230 |
67
+ | 0.1733 | 0.6474 | 600 | 0.2026 | 0.9509 | 0.7935 | 0.7895 | 0.7860 |
68
+ | 0.1048 | 0.7553 | 700 | 0.1498 | 0.9563 | 0.8978 | 0.7432 | 0.7662 |
69
+ | 0.1751 | 0.8632 | 800 | 0.1688 | 0.9495 | 0.8475 | 0.7802 | 0.7727 |
70
+ | 0.1087 | 0.9711 | 900 | 0.1966 | 0.9220 | 0.8840 | 0.6922 | 0.6952 |
71
+ | 0.1367 | 1.0790 | 1000 | 0.1605 | 0.9423 | 0.8138 | 0.8021 | 0.7573 |
72
+ | 0.1251 | 1.1869 | 1100 | 0.1698 | 0.9313 | 0.7926 | 0.8010 | 0.7637 |
73
+ | 0.1383 | 1.2948 | 1200 | 0.1252 | 0.9625 | 0.8940 | 0.8389 | 0.8525 |
74
+ | 0.1173 | 1.4028 | 1300 | 0.1372 | 0.9476 | 0.8857 | 0.7698 | 0.7774 |
75
+ | 0.1014 | 1.5107 | 1400 | 0.1104 | 0.9655 | 0.9173 | 0.8072 | 0.8257 |
76
+ | 0.1073 | 1.6186 | 1500 | 0.1222 | 0.9651 | 0.8932 | 0.8670 | 0.8792 |
77
+ | 0.1093 | 1.7265 | 1600 | 0.1270 | 0.9517 | 0.8591 | 0.8431 | 0.8316 |
78
+ | 0.0832 | 1.8344 | 1700 | 0.1128 | 0.9645 | 0.9080 | 0.8533 | 0.8707 |
79
+ | 0.0972 | 1.9423 | 1800 | 0.1040 | 0.9704 | 0.9309 | 0.8473 | 0.8744 |
80
+ | 0.0771 | 2.0502 | 1900 | 0.1116 | 0.9602 | 0.8525 | 0.8643 | 0.8438 |
81
+ | 0.1073 | 2.1581 | 2000 | 0.1096 | 0.9645 | 0.9117 | 0.8557 | 0.8684 |
82
+ | 0.0997 | 2.2660 | 2100 | 0.1022 | 0.9708 | 0.9292 | 0.8826 | 0.9014 |
83
+ | 0.089 | 2.3739 | 2200 | 0.1032 | 0.9691 | 0.9104 | 0.8785 | 0.8861 |
84
+ | 0.0688 | 2.4818 | 2300 | 0.1046 | 0.9652 | 0.9195 | 0.8446 | 0.8638 |
85
+ | 0.0894 | 2.5897 | 2400 | 0.0933 | 0.9727 | 0.9006 | 0.8957 | 0.8956 |
86
+ | 0.0691 | 2.6976 | 2500 | 0.0929 | 0.9714 | 0.9093 | 0.8807 | 0.8886 |
87
+ | 0.0903 | 2.8055 | 2600 | 0.1017 | 0.9666 | 0.9229 | 0.8679 | 0.8835 |
88
+ | 0.0582 | 2.9134 | 2700 | 0.1013 | 0.9670 | 0.9209 | 0.8649 | 0.8808 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.44.2
94
+ - Pytorch 2.4.0+cu121
95
+ - Datasets 3.0.0
96
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/vit-base-patch16-224",
3
+ "architectures": [
4
+ "ViTForClassificationAndContrastiveLearning"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "encoder_stride": 16,
8
+ "finetuning_task": "image-classification",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.0,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0",
14
+ "1": "LABEL_1",
15
+ "2": "LABEL_2",
16
+ "3": "LABEL_3",
17
+ "4": "LABEL_4",
18
+ "5": "LABEL_5",
19
+ "6": "LABEL_6",
20
+ "7": "LABEL_7",
21
+ "8": "LABEL_8"
22
+ },
23
+ "image_size": 224,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 3072,
26
+ "label2id": {
27
+ "LABEL_0": 0,
28
+ "LABEL_1": 1,
29
+ "LABEL_2": 2,
30
+ "LABEL_3": 3,
31
+ "LABEL_4": 4,
32
+ "LABEL_5": 5,
33
+ "LABEL_6": 6,
34
+ "LABEL_7": 7,
35
+ "LABEL_8": 8
36
+ },
37
+ "layer_norm_eps": 1e-12,
38
+ "model_type": "vit",
39
+ "num_attention_heads": 12,
40
+ "num_channels": 3,
41
+ "num_hidden_layers": 12,
42
+ "patch_size": 16,
43
+ "problem_type": "single_label_classification",
44
+ "qkv_bias": true,
45
+ "torch_dtype": "float32",
46
+ "transformers_version": "4.44.2"
47
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d63c81dfe4cbd6b323a552502628e7f68f452112349e595e5a7e3fcfea50a12
3
+ size 345608060
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36630d9a91285b638b76cf43bee2aa39df28568eb4e31ac8eb974dcc1a97e540
3
+ size 5240