|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
from unsloth import FastLanguageModel |
|
import torch |
|
from datasets import load_dataset, concatenate_datasets |
|
|
|
from trl import SFTTrainer |
|
from transformers import TrainingArguments |
|
from unsloth import is_bfloat16_supported |
|
|
|
max_seq_length = 512 |
|
dtype = None |
|
load_in_4bit = True |
|
|
|
model_id = "llm-jp/llm-jp-3-13b" |
|
new_model_id = "llm-jp-3-13b-it" |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name=model_id, |
|
dtype=dtype, |
|
load_in_4bit=load_in_4bit, |
|
trust_remote_code=True, |
|
) |
|
|
|
|
|
model = FastLanguageModel.get_peft_model( |
|
model, |
|
r = 32, |
|
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", |
|
"gate_proj", "up_proj", "down_proj",], |
|
lora_alpha = 32, |
|
lora_dropout = 0.05, |
|
bias = "none", |
|
use_gradient_checkpointing = "unsloth", |
|
random_state = 3407, |
|
use_rslora = False, |
|
loftq_config = None, |
|
max_seq_length = max_seq_length, |
|
) |
|
|
|
|
|
datasets_list = [ |
|
"/home/knishizawa/Matsuo_AI/LLM_Course2024/Distribution20241221_all/ichikara-instruction-003-001-1.json", |
|
"/home/knishizawa/Matsuo_AI/LLM_Course2024/Distribution20241221_all/ichikara-instruction-003-001-2.1.json", |
|
"/home/knishizawa/Matsuo_AI/LLM_Course2024/Distribution20241221_all/ichikara-instruction-003-001-2.2.json", |
|
"/home/knishizawa/Matsuo_AI/LLM_Course2024/Distribution20241221_all/ichikara-instruction-003-001-5.1.json", |
|
"/home/knishizawa/Matsuo_AI/LLM_Course2024/Distribution20241221_all/ichikara-instruction-003-001-5.2.json", |
|
"/home/knishizawa/Matsuo_AI/LLM_Course2024/Distribution20241221_all/ichikara-instruction-003-002-1.json", |
|
"/home/knishizawa/Matsuo_AI/LLM_Course2024/Distribution20241221_all/ichikara-instruction-003-003-1.json" |
|
] |
|
|
|
valid_datasets = [] |
|
|
|
|
|
prompt = """### 指示 |
|
{} |
|
### 回答 |
|
{}""" |
|
EOS_TOKEN = tokenizer.eos_token |
|
|
|
|
|
def formatting_prompts_func(examples): |
|
input_text = examples["text"] |
|
output_text = examples["output"] |
|
text = prompt.format(input_text, output_text) + EOS_TOKEN |
|
return { "formatted_text": text } |
|
|
|
|
|
for file in datasets_list: |
|
try: |
|
dataset = load_dataset("json", data_files=file, split="train") |
|
dataset = dataset.map(formatting_prompts_func, num_proc=4) |
|
valid_datasets.append(dataset) |
|
print(f"成功: {file} - {len(dataset)} 件ロード") |
|
|
|
print(dataset[3]["formatted_text"]) |
|
except Exception as e: |
|
print(f"エラー: {file} - {e}") |
|
|
|
|
|
if valid_datasets: |
|
merged_dataset = concatenate_datasets(valid_datasets) |
|
if len(merged_dataset) > 0: |
|
save_dir = "/home/knishizawa/Matsuo_AI/LLM_Course2024/merged_dataset" |
|
merged_dataset.save_to_disk(save_dir) |
|
print(f"マージされたデータセットが {save_dir} に保存されました。") |
|
else: |
|
print("マージされたデータセットが空です。") |
|
else: |
|
print("有効なデータセットが見つかりませんでした。") |
|
|
|
|
|
trainer = SFTTrainer( |
|
model = model, |
|
tokenizer = tokenizer, |
|
train_dataset=merged_dataset, |
|
max_seq_length = max_seq_length, |
|
dataset_text_field="formatted_text", |
|
packing = False, |
|
args = TrainingArguments( |
|
per_device_train_batch_size = 2, |
|
gradient_accumulation_steps = 4, |
|
num_train_epochs = 1, |
|
logging_steps = 10, |
|
warmup_steps = 10, |
|
save_steps=100, |
|
save_total_limit=2, |
|
max_steps=-1, |
|
learning_rate = 2e-4, |
|
fp16 = not is_bfloat16_supported(), |
|
bf16 = is_bfloat16_supported(), |
|
group_by_length=True, |
|
seed = 3407, |
|
output_dir = "outputs", |
|
report_to = "none", |
|
), |
|
) |
|
|
|
|
|
trainer_stats = trainer.train() |
|
|
|
save_dir = "./saved_model" |
|
|
|
model.save_pretrained(save_dir) |
|
|
|
tokenizer.save_pretrained(save_dir) |
|
print(f"モデルが {save_dir} に保存されました。") |
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
datasets = [] |
|
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
|
|
from tqdm import tqdm |
|
|
|
|
|
FastLanguageModel.for_inference(model) |
|
|
|
results = [] |
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
|
|
prompt = f"""### 指示\n{input}\n### 回答\n""" |
|
|
|
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] |
|
|
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
|
|
|
|
with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
|
|
|