NoCaptain commited on
Commit
66059e9
·
1 Parent(s): 06497bd

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -1
README.md CHANGED
@@ -1 +1,80 @@
1
- Check this out!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - accuracy
8
+ - f1
9
+ model-index:
10
+ - name: Bert_Test
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Bert_Test
18
+
19
+ This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.1965
22
+ - Precision: 0.9332
23
+ - Accuracy: 0.9223
24
+ - F1: 0.9223
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 32
45
+ - eval_batch_size: 8
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_steps: 500
50
+ - num_epochs: 7
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Accuracy | F1 |
55
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:--------:|:------:|
56
+ | 0.6717 | 0.4 | 500 | 0.6049 | 0.7711 | 0.6743 | 0.6112 |
57
+ | 0.5704 | 0.8 | 1000 | 0.5299 | 0.7664 | 0.7187 | 0.6964 |
58
+ | 0.52 | 1.2 | 1500 | 0.4866 | 0.7698 | 0.7537 | 0.7503 |
59
+ | 0.4792 | 1.6 | 2000 | 0.4292 | 0.8031 | 0.793 | 0.7927 |
60
+ | 0.4332 | 2.0 | 2500 | 0.3920 | 0.8318 | 0.8203 | 0.8198 |
61
+ | 0.381 | 2.4 | 3000 | 0.3723 | 0.9023 | 0.8267 | 0.8113 |
62
+ | 0.3625 | 2.8 | 3500 | 0.3134 | 0.8736 | 0.8607 | 0.8601 |
63
+ | 0.3325 | 3.2 | 4000 | 0.2924 | 0.8973 | 0.871 | 0.8683 |
64
+ | 0.3069 | 3.6 | 4500 | 0.2671 | 0.8916 | 0.8847 | 0.8851 |
65
+ | 0.2866 | 4.0 | 5000 | 0.2571 | 0.8920 | 0.8913 | 0.8926 |
66
+ | 0.2595 | 4.4 | 5500 | 0.2450 | 0.8980 | 0.9 | 0.9015 |
67
+ | 0.2567 | 4.8 | 6000 | 0.2246 | 0.9057 | 0.9043 | 0.9054 |
68
+ | 0.2255 | 5.2 | 6500 | 0.2263 | 0.9332 | 0.905 | 0.9030 |
69
+ | 0.2237 | 5.6 | 7000 | 0.2083 | 0.9265 | 0.9157 | 0.9156 |
70
+ | 0.2248 | 6.0 | 7500 | 0.2039 | 0.9387 | 0.9193 | 0.9185 |
71
+ | 0.2086 | 6.4 | 8000 | 0.2038 | 0.9436 | 0.9193 | 0.9181 |
72
+ | 0.2029 | 6.8 | 8500 | 0.1965 | 0.9332 | 0.9223 | 0.9223 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.18.0
78
+ - Pytorch 1.10.0+cu111
79
+ - Datasets 2.0.0
80
+ - Tokenizers 0.11.6