import os from typing import Any, Dict, Union from PIL import Image import torch from diffusers import FluxPipeline from huggingface_inference_toolkit.logging import logger from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe from torchao.quantization import autoquant import time import gc # Set high precision for float32 matrix multiplications. # This setting optimizes performance on NVIDIA GPUs with Ampere architecture (e.g., A100, RTX 30 series) or newer. torch.set_float32_matmul_precision("high") import torch._dynamo torch._dynamo.config.suppress_errors = False # for debugging class EndpointHandler: def __init__(self, path=""): self.pipe = FluxPipeline.from_pretrained( "NoMoreCopyrightOrg/flux-dev", torch_dtype=torch.bfloat16, ).to("cuda") self.pipe.enable_vae_slicing() self.pipe.enable_vae_tiling() self.pipe.transformer.fuse_qkv_projections() self.pipe.vae.fuse_qkv_projections() self.pipe.transformer.to(memory_format=torch.channels_last) self.pipe.vae.to(memory_format=torch.channels_last) apply_cache_on_pipe(self.pipe, residual_diff_threshold=0.12) self.pipe.transformer = torch.compile( self.pipe.transformer, mode="max-autotune-no-cudagraphs", ) self.pipe.vae = torch.compile( self.pipe.vae, mode="max-autotune-no-cudagraphs", ) self.pipe.transformer = autoquant(self.pipe.transformer, error_on_unseen=False) self.pipe.vae = autoquant(self.pipe.vae, error_on_unseen=False) gc.collect() torch.cuda.empty_cache() start_time = time.time() print("Start warming-up pipeline") self.pipe("Hello world!") # Warm-up for compiling end_time = time.time() time_taken = end_time - start_time print(f"Time taken: {time_taken:.2f} seconds") self.record=0 def __call__(self, data: Dict[str, Any]) -> Union[Image.Image, None]: try: logger.info(f"Received incoming request with {data=}") if "inputs" in data and isinstance(data["inputs"], str): prompt = data.pop("inputs") elif "prompt" in data and isinstance(data["prompt"], str): prompt = data.pop("prompt") else: raise ValueError( "Provided input body must contain either the key `inputs` or `prompt` with the" " prompt to use for the image generation, and it needs to be a non-empty string." ) if prompt=="get_queue": return self.record parameters = data.pop("parameters", {}) num_inference_steps = parameters.get("num_inference_steps", 28) width = parameters.get("width", 1024) height = parameters.get("height", 1024) #guidance_scale = parameters.get("guidance_scale", 3.5) guidance_scale = parameters.get("guidance", 3.5) # seed generator (seed cannot be provided as is but via a generator) seed = parameters.get("seed", 0) generator = torch.manual_seed(seed) self.record+=1 start_time = time.time() result = self.pipe( # type: ignore prompt, height=height, width=width, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, ).images[0] end_time = time.time() time_taken = end_time - start_time print(f"Time taken: {time_taken:.2f} seconds") self.record-=1 return result except Exception as e: print(e) return None