NoaiGPT commited on
Commit
8e120b9
·
verified ·
1 Parent(s): c9d51bd
README.md CHANGED
@@ -1,3 +1,96 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: openrail
3
+ inference:
4
+ parameters:
5
+ num_beams: 3
6
+ num_beam_groups: 3
7
+ num_return_sequences: 1
8
+ repetition_penalty: 3
9
+ diversity_penalty: 3.01
10
+ no_repeat_ngram_size: 2
11
+ temperature: 0.8
12
+ max_length: 64
13
+ widget:
14
+ - text: >-
15
+ paraphraser: Learn to build generative AI applications with an expert AWS
16
+ instructor with the 2-day Developing Generative AI Applications on AWS
17
+ course.
18
+ example_title: AWS course
19
+ - text: >-
20
+ paraphraser: In healthcare, Generative AI can help generate synthetic
21
+ medical data to train machine learning models, develop new drug candidates,
22
+ and design clinical trials.
23
+ example_title: Generative AI
24
+ - text: >-
25
+ paraphraser: By leveraging prior model training through transfer learning,
26
+ fine-tuning can reduce the amount of expensive computing power and labeled
27
+ data needed to obtain large models tailored to niche use cases and business
28
+ needs.
29
+ example_title: Fine Tuning
30
+ ---
31
+
32
+
33
+ # Text Rewriter Paraphraser
34
+
35
+ This repository contains a fine-tuned text-rewriting model based on the T5-Base with 223M parameters.
36
+
37
+ Developed by: https://exnrt.com
38
+
39
+ ## Key Features:
40
+
41
+ * **Fine-tuned on t5-base:** Leverages the power of a pre-trained text-to-text transfer model for effective paraphrasing.
42
+ * **Large Dataset (430k examples):** Trained on a comprehensive dataset combining three open-source sources and cleaned using various techniques for optimal performance.
43
+ * **High Quality Paraphrases:** Generates paraphrases that significantly alter sentence structure while maintaining accuracy and factual correctness.
44
+ * **Non-AI Detectable:** Aims to produce paraphrases that appear natural and indistinguishable from human-written text.
45
+
46
+ **Model Performance:**
47
+
48
+ * Train Loss: 1.0645
49
+ * Validation Loss: 0.8761
50
+
51
+ ## Getting Started:
52
+
53
+ T5 model expects a task related prefix: since it is a paraphrasing task, we will add a prefix "paraphraser: "
54
+
55
+ ```python
56
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
57
+
58
+ device = "cuda"
59
+ tokenizer = AutoTokenizer.from_pretrained("Ateeqq/Text-Rewriter-Paraphraser", token='your_token')
60
+ model = AutoModelForSeq2SeqLM.from_pretrained("Ateeqq/Text-Rewriter-Paraphraser", token='your_token').to(device)
61
+
62
+ def generate_title(text):
63
+ input_ids = tokenizer(f'paraphraser: {text}', return_tensors="pt", padding="longest", truncation=True, max_length=64).input_ids.to(device)
64
+ outputs = model.generate(
65
+ input_ids,
66
+ num_beams=4,
67
+ num_beam_groups=4,
68
+ num_return_sequences=4,
69
+ repetition_penalty=10.0,
70
+ diversity_penalty=3.0,
71
+ no_repeat_ngram_size=2,
72
+ temperature=0.8,
73
+ max_length=64
74
+ )
75
+ return tokenizer.batch_decode(outputs, skip_special_tokens=True)
76
+
77
+ text = 'By leveraging prior model training through transfer learning, fine-tuning can reduce the amount of expensive computing power and labeled data needed to obtain large models tailored to niche use cases and business needs.'
78
+ generate_title(text)
79
+ ```
80
+ ### Output:
81
+ ```
82
+ ['The fine-tuning can reduce the amount of expensive computing power and labeled data required to obtain large models adapted for niche use cases and business needs by using prior model training through transfer learning.',
83
+ 'fine-tuning, by utilizing prior model training through transfer learning, can reduce the amount of expensive computing power and labeled data required to obtain large models tailored for niche use cases and business needs.',
84
+ 'Fine-tunering by using prior model training through transfer learning can reduce the amount of expensive computing power and labeled data required to obtain large models adapted for niche use cases and business needs.',
85
+ 'Using transfer learning to use prior model training, fine-tuning can reduce the amount of expensive computing power and labeled data required for large models that are suitable in niche usage cases or businesses.']
86
+ ```
87
+
88
+ **Disclaimer:**
89
+
90
+ * Limited Use: It grants a non-exclusive, non-transferable license to use the this model same as Llama-3. This means you can't freely share it with others or sell the model itself.
91
+ * Commercial Use Allowed: You can use the model for commercial purposes, but under the terms of the license agreement.
92
+ * Attribution Required: You need to abide by the agreement's terms regarding attribution. It is essential to use the paraphrased text responsibly and ethically, with proper attribution of the original source.
93
+
94
+ **Further Development:**
95
+
96
+ (Mention any ongoing development or areas for future improvement in Discussions.)
config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "t5-base",
3
+ "architectures": [
4
+ "T5ForConditionalGeneration"
5
+ ],
6
+ "d_ff": 3072,
7
+ "d_kv": 64,
8
+ "d_model": 768,
9
+ "decoder_start_token_id": 0,
10
+ "dropout_rate": 0.1,
11
+ "eos_token_id": 1,
12
+ "feed_forward_proj": "relu",
13
+ "initializer_factor": 1.0,
14
+ "is_encoder_decoder": true,
15
+ "layer_norm_epsilon": 1e-06,
16
+ "model_type": "t5",
17
+ "n_positions": 512,
18
+ "num_decoder_layers": 12,
19
+ "num_heads": 12,
20
+ "num_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 0,
23
+ "relative_attention_num_buckets": 32,
24
+ "task_specific_params": {
25
+ "summarization": {
26
+ "early_stopping": true,
27
+ "length_penalty": 2.0,
28
+ "max_length": 200,
29
+ "min_length": 30,
30
+ "no_repeat_ngram_size": 3,
31
+ "num_beams": 4,
32
+ "prefix": "summarize: "
33
+ },
34
+ "translation_en_to_de": {
35
+ "early_stopping": true,
36
+ "max_length": 300,
37
+ "num_beams": 4,
38
+ "prefix": "translate English to German: "
39
+ },
40
+ "translation_en_to_fr": {
41
+ "early_stopping": true,
42
+ "max_length": 300,
43
+ "num_beams": 4,
44
+ "prefix": "translate English to French: "
45
+ },
46
+ "translation_en_to_ro": {
47
+ "early_stopping": true,
48
+ "max_length": 300,
49
+ "num_beams": 4,
50
+ "prefix": "translate English to Romanian: "
51
+ }
52
+ },
53
+ "torch_dtype": "float32",
54
+ "transformers_version": "4.16.2",
55
+ "use_cache": true,
56
+ "vocab_size": 32128
57
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "decoder_start_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.7.0.dev0"
7
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfe76d0489ed4949f9c2914fe170b1cf59dce2b79a1c580e22958b3d689d1006
3
+ size 891733454
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
3
+ size 791656
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 100, "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"], "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "t5-base", "tokenizer_class": "T5Tokenizer"}