File size: 2,460 Bytes
c7bdea7
 
c10fcae
 
c7bdea7
c10fcae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: cc-by-nc-sa-4.0
language:
- 'no'
---

# Model Card

NorGPT-369M-NO-MRPC-peft is trained on top of [NorGPT-369M](https://huggingface.co/NorGLM/NorGPT-369M) model on [NO-MRPC](https://huggingface.co/datasets/NorGLM/NO-MRPC) dataset.

Data format:
```
input: {text_a}[SEP]{text_b}
label: {0, 1}
```

## Run the Model
```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

torch_device = "cuda" if torch.cuda.is_available() else "cpu"

source_model_id = "NorGLM/NorGPT-369M"
peft_model_id = "NorGLM/NorGPT-369M-NO-MRPC-peft"

config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(source_model_id, device_map='balanced')

tokenizer_max_len = 2048
tokenizer_config = {'pretrained_model_name_or_path': source_model_id,
                            'max_len': tokenizer_max_len}
tokenizer = tokenizer = AutoTokenizer.from_pretrained(**tokenizer_config)
tokenizer.pad_token = tokenizer.eos_token

model = PeftModel.from_pretrained(model, peft_model_id)
```

## Inference Example
Load the model to evaluate on the validation set:
```python

def getDataSetFromFiles(df):
    # convert dataset    
    df["text"] = df[["text_a", "text_b"]].apply(lambda x: " [SEP] ".join(x.astype(str)), axis =1)
    df = df.drop(["idx", "text_a", "text_b"], axis=1)
    df["label"] = df.label.map({0: 0, 1: 1})
    return Dataset.from_pandas(df)

print("--LOADING EVAL DATAS---")
eval_data = load_dataset("NorGLM/NO-MRPC", data_files="val.jsonl")
eval_data = getDataSetFromFiles(eval_data["train"].to_pandas())

print("--MAKING PREDICTIONS---")
model.eval()

y_true = []
y_pred = []
count = 0

for data in eval_data:
    count = count + 1
    if count % 100 == 0:
        print(count)
    inputs = tokenizer(data['text'], return_tensors="pt").to(torch_device)
    
    with torch.no_grad():
        logits = model(**inputs).logits
        #print(logits)

    predicted_class_id = logits.argmax().item()

    y_true.append(data['label'])
    y_pred.append(predicted_class_id)

print(y_pred)

print(f"Lenght of true_values: {len(y_true)}")   
print(f"Lenght of predicted_values: {len(y_pred)}")    

y_true = np.array(y_true)
y_pred = np.array(y_pred)

F_score = f1_score(y_true, y_pred, average="macro")
print(f"F1 score: {F_score}")

accuracy = accuracy_score(y_true, y_pred)
print(f"Accuracy: {accuracy}")

```

## Note
More training details will be released soon!