--- license: cc-by-nc-sa-4.0 language: - 'no' --- # Model Card NorGPT-369M-NO-QNLI-peft is trained on top of [NorGPT-369M](https://huggingface.co/NorGLM/NorGPT-369M) model on [NO-QNLI](https://huggingface.co/datasets/NorGLM/NO-QNLI) dataset. Data format: ``` input: {premise}[SEP]{hypothesis} label: {entailment, not_entailment} -> {1,0} ``` ## Run the Model ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import torch torch_device = "cuda" if torch.cuda.is_available() else "cpu" source_model_id = "NorGLM/NorGPT-369M" peft_model_id = "NorGLM/NorGPT-369M-NO-QNLI-peft" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(source_model_id, device_map='balanced') tokenizer_max_len = 2048 tokenizer_config = {'pretrained_model_name_or_path': source_model_id, 'max_len': tokenizer_max_len} tokenizer = tokenizer = AutoTokenizer.from_pretrained(**tokenizer_config) tokenizer.pad_token = tokenizer.eos_token model = PeftModel.from_pretrained(model, peft_model_id) ``` ## Inference Example Load the model to evaluate on the validation set: ```python def getDataSetFromFiles(df): # convert dataset df["text"] = df[["premise", "hypothesis"]].apply(lambda x: " [SEP] ".join(x.astype(str)), axis =1) df = df.drop(["idx", "premise", "hypothesis"], axis=1) #df['label'] = df['label'].replace({1:'contradiction', -1:'entailment', 0:'neutral'}) df["label"] = df.label.map({"not_entailment": 0, "entailment": 1}) return Dataset.from_pandas(df) print("--LOADING EVAL DATAS---") eval_data = load_dataset("NorGLM/NO-BoolQ", data_files="val.jsonl") eval_data = getDataSetFromFiles(eval_data["train"].to_pandas()) print("--MAKING PREDICTIONS---") model.eval() y_true = [] y_pred = [] count = 0 for data in eval_data: count = count + 1 if count % 100 == 0: print(count) inputs = tokenizer(data['text'], return_tensors="pt").to(torch_device) with torch.no_grad(): logits = model(**inputs).logits #print(logits) predicted_class_id = logits.argmax().item() y_true.append(data['label']) y_pred.append(predicted_class_id) print(y_pred) print(f"Lenght of true_values: {len(y_true)}") print(f"Lenght of predicted_values: {len(y_pred)}") y_true = np.array(y_true) y_pred = np.array(y_pred) F_score = f1_score(y_true, y_pred, average="macro") print(f"F1 score: {F_score}") accuracy = accuracy_score(y_true, y_pred) print(f"Accuracy: {accuracy}") ``` ## Note More training details will be released soon!