--- license: cc-by-nc-sa-4.0 language: - 'no' --- # Model Card NorGPT-3B-continue-instruction-peft is trained on top of [NorGPT-3B-continue](https://huggingface.co/NorGLM/NorGPT-3B-continue) model on [NO-Alpaca](https://huggingface.co/datasets/NbAiLab/norwegian-alpaca) dataset. Prompt format: ``` {instruction} {input} : {output} ``` Inference prompt: ``` {instruction} {input} : ``` ## Run the Model ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import torch source_model_id = "NorGLM/NorGPT-3B-continue" peft_model_id = "NorGLM/NorGPT-3B-continue-instruction-peft" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(source_model_id, device_map='balanced') tokenizer_max_len = 2048 tokenizer_config = {'pretrained_model_name_or_path': source_model_id, 'max_len': tokenizer_max_len} tokenizer = tokenizer = AutoTokenizer.from_pretrained(**tokenizer_config) tokenizer.pad_token = tokenizer.eos_token model = PeftModel.from_pretrained(model, peft_model_id) ``` ## Inference Example Load the model to evaluate on the last 20\% of NO-Alpaca dataset: ```python def merge_columns(example): if str(example["input"]) == "": example["text"] = str(example["instruction"]) + " : " else: example["text"] = str(example["instruction"]) + " " + str(example["input"]) + " : " return example def generate_text(text, max_length=200, do_sample=True, top_p = 0.92, top_k=0): set_seed(42) model_inputs = tokenizer(text, return_tensors='pt').to(torch_device) output = model.generate(**model_inputs, max_new_tokens = max_length, no_repeat_ngram_size=2, pad_token_id=tokenizer.eos_token_id) return tokenizer.decode(output[0], skip_special_tokens=True) print("--LOADING EVAL DATAS---") eval_data = load_dataset("NbAiLab/norwegian-alpaca", split='train[-20%:]') print("--MAKING PREDICTIONS---") model.eval() output_file = with open(output_file, 'w', encoding='utf-8-sig') as file: generated_text = [] for question in eval_data['text']: generated_text.append({"generated_text": generate_text(question)}) print({"text_generated": len(generated_text)}) json_lines = [json.dumps(data) for data in generated_text] json_data = "\n".join(json_lines) file.write(json_data) ``` ## Note More training details will be released soon!