NorbertRop
commited on
Commit
·
cfe299e
1
Parent(s):
6c4e9cc
First version from course
Browse files- .gitattributes +1 -0
- PPO-MlpPolicy-LunarLander-v2.zip +3 -0
- PPO-MlpPolicy-LunarLander-v2/_stable_baselines3_version +1 -0
- PPO-MlpPolicy-LunarLander-v2/data +94 -0
- PPO-MlpPolicy-LunarLander-v2/policy.optimizer.pth +3 -0
- PPO-MlpPolicy-LunarLander-v2/policy.pth +3 -0
- PPO-MlpPolicy-LunarLander-v2/pytorch_variables.pth +3 -0
- PPO-MlpPolicy-LunarLander-v2/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
PPO-MlpPolicy-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7be58460719237307dd9a83c5eb38873607ac3ce86fde3510406146df9906d2e
|
3 |
+
size 144391
|
PPO-MlpPolicy-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
PPO-MlpPolicy-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2eb024af0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2eb024b80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2eb024c10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2eb024ca0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa2eb024d30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa2eb024dc0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2eb024e50>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa2eb024ee0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2eb024f70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2eb028040>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2eb0280d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fa2eb376e00>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651676383.2524848,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVOQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjIQvaG9tZS9ub3JiZXJ0Ly5jYWNoZS9weXBvZXRyeS92aXJ0dWFsZW52cy9kZWVwLXJsLWNsYXNzLVV0UWJJWU1ULXB5My45L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIQvaG9tZS9ub3JiZXJ0Ly5jYWNoZS9weXBvZXRyeS92aXJ0dWFsZW52cy9kZWVwLXJsLWNsYXNzLVV0UWJJWU1ULXB5My45L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDbJD1Pej+8UsXuPGrjYbzh+689gh1dPgAAgD8AAIA/M9vyu7/Ksz8gLkC/PEWPvrnQDDxuIC4+AAAAAAAAAACanAK9pJBqOv6UtTwAGsI7n2wyu7hd07wAAAAAAAAAAAboOD7DxD28j/kWO4vkRLnVOcC9o5kcugAAgD8AAIA/zUwdPY+CY7oFKxI7ZM7JtT+p7rqONsK0AACAPwAAgD+akcq7yDywP7dIwL2DC5i+kzqnOYLXsjwAAAAAAAAAAEAqtT32DCq62VI/vNAoCrVbiMw6Aw6DNAAAgD8AAIA/cye2vY/eVbpm8KM7rhZftiE5tDmSG1K1AACAPwAAgD/zwcI9Hz3SuRhAA7wM0fk1U7oHt11+Z7UAAIA/AACAPzOjQzvhDJm6j+tJvBsQHbbMIXE6UqqKNQAAgD8AAIA/Wl+ZvSnATboWBW25cD3jtPHgPTsYUIc4AACAPwAAgD8za207KUBqusGyRzrN52w07Q4Cupr/Y7kAAIA/AACAP8AiuD2uJ624T7avO8C57Ta2fMs7lVnTugAAgD8AAIA/s0qFPWzVND9hgQy9SUu3vlB7gT0eaP08AAAAAAAAAAAzqNI9j3Y8umvHW7t2O2g4CclBuz7j7jkAAIA/AACAPwCefL1cwza6RqiQO+tCoTgjbRK6nr8sugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvFzEd2K3WECUhpRSlIwBbJRN6AOMAXSUR0BwPvQE6kqMdX2UKGgGaAloD0MII2k3+pisVUCUhpRSlGgVTegDaBZHQHBL6Z+hGpd1fZQoaAZoCWgPQwjYg0nx8QZeQJSGlFKUaBVN6ANoFkdAcEz2V3Ux23V9lChoBmgJaA9DCInPnWD/bV1AlIaUUpRoFU3oA2gWR0BwZNtm+TNddX2UKGgGaAloD0MIwoh9AijIYECUhpRSlGgVTegDaBZHQHBoL0aqCH11fZQoaAZoCWgPQwgudZDXg9JiQJSGlFKUaBVN6ANoFkdAcGtTvRZ2ZHV9lChoBmgJaA9DCGKjrN9MpmJAlIaUUpRoFU3oA2gWR0BwepkUbkwOdX2UKGgGaAloD0MIGJmAX6NUYkCUhpRSlGgVTegDaBZHQHB/K/20zCV1fZQoaAZoCWgPQwg6lKEqJsxhQJSGlFKUaBVN6ANoFkdAcJHawD/2kHV9lChoBmgJaA9DCF6AfXTqehhAlIaUUpRoFU0IAWgWR0BwmDPTodMkdX2UKGgGaAloD0MItDwP7s7jW0CUhpRSlGgVTegDaBZHQHCcq/mDDj11fZQoaAZoCWgPQwgx0SAFT6NfQJSGlFKUaBVN6ANoFkdAcKfqD9OymnV9lChoBmgJaA9DCPnbniAxnmRAlIaUUpRoFU3oA2gWR0Bwr4xBVuJldX2UKGgGaAloD0MIO2743XQ+XECUhpRSlGgVTegDaBZHQHCxslXzUZx1fZQoaAZoCWgPQwj99QoL7jpYQJSGlFKUaBVN6ANoFkdAcRxJuEVWS3V9lChoBmgJaA9DCMrC19c6KGJAlIaUUpRoFU3oA2gWR0BxHmk8A7xNdX2UKGgGaAloD0MIKZSFr68hYkCUhpRSlGgVTegDaBZHQHEgxGYrrgR1fZQoaAZoCWgPQwh2HD9UGgthQJSGlFKUaBVN6ANoFkdAcSjDOkcjq3V9lChoBmgJaA9DCE91yM3wKmNAlIaUUpRoFU3oA2gWR0BxN3/T9bX6dX2UKGgGaAloD0MIYYicvp7MWUCUhpRSlGgVTegDaBZHQHE4xBmf5DZ1fZQoaAZoCWgPQwhhNCvbhz1aQJSGlFKUaBVN6ANoFkdAcVHajvd/KHV9lChoBmgJaA9DCNRDNLqDjWBAlIaUUpRoFU3oA2gWR0BxVU/lhgE2dX2UKGgGaAloD0MIyXVTyutcYkCUhpRSlGgVTegDaBZHQHFozJdSl311fZQoaAZoCWgPQwjswg/Op7BZQJSGlFKUaBVN6ANoFkdAcW21MdtEX3V9lChoBmgJaA9DCFngK7r1iEtAlIaUUpRoFUvoaBZHQHF+tA5aNdZ1fZQoaAZoCWgPQwjNzTeieyxaQJSGlFKUaBVN6ANoFkdAcYFH4XXRPXV9lChoBmgJaA9DCCFAho4d1WNAlIaUUpRoFU3oA2gWR0Bxh84Ia99MdX2UKGgGaAloD0MIIvsgy4JIX0CUhpRSlGgVTegDaBZHQHGMtUXHim51fZQoaAZoCWgPQwiP/wJBgLtjQJSGlFKUaBVN6ANoFkdAcZd7zkIX03V9lChoBmgJaA9DCF2MgXUcvGJAlIaUUpRoFU3oA2gWR0BxnedhAnlXdX2UKGgGaAloD0MIaw2l9iKGXUCUhpRSlGgVTegDaBZHQHGftTtLL6l1fZQoaAZoCWgPQwjG/UemQ/FIQJSGlFKUaBVNCAFoFkdAcbDrSmZVn3V9lChoBmgJaA9DCAKEDyVabVdAlIaUUpRoFU3oA2gWR0ByAXViF0xNdX2UKGgGaAloD0MI0a+tn/5zW0CUhpRSlGgVTegDaBZHQHIDjaXa8Hx1fZQoaAZoCWgPQwhw7q8ed1xkQJSGlFKUaBVN6ANoFkdAcgXcTakAP3V9lChoBmgJaA9DCIKOVrWkYFtAlIaUUpRoFU3oA2gWR0ByDeUFB6a9dX2UKGgGaAloD0MIQPuRIrLwYkCUhpRSlGgVTegDaBZHQHIcb8WKuSx1fZQoaAZoCWgPQwjzc0NTdl5gQJSGlFKUaBVN6ANoFkdAch2cDKYAsHV9lChoBmgJaA9DCBvyzwziTl1AlIaUUpRoFU3oA2gWR0ByNXiyY5T7dX2UKGgGaAloD0MINlt5yX/mYUCUhpRSlGgVTegDaBZHQHJM8/D+BH11fZQoaAZoCWgPQwh9eJYgozVlQJSGlFKUaBVN6ANoFkdAclHWsRxtHnV9lChoBmgJaA9DCBHiytk7vFRAlIaUUpRoFU3oA2gWR0ByYz+bVjI8dX2UKGgGaAloD0MIMxZNZyeIXECUhpRSlGgVTegDaBZHQHJlp13dKul1fZQoaAZoCWgPQwj8GHPXkpdgQJSGlFKUaBVN6ANoFkdAcm/+L3sXznV9lChoBmgJaA9DCI+qJoi67WFAlIaUUpRoFU3oA2gWR0ByezGYKIBSdX2UKGgGaAloD0MIthFPdrPoYUCUhpRSlGgVTegDaBZHQHKCMzyjHn51fZQoaAZoCWgPQwhvnBTmPUlbQJSGlFKUaBVN6ANoFkdAcoQuqFRHgHV9lChoBmgJaA9DCNNsHofBOExAlIaUUpRoFUvjaBZHQHKIVaGHpKV1fZQoaAZoCWgPQwiVDABV3MFbQJSGlFKUaBVN6ANoFkdAcpYnDiwSrnV9lChoBmgJaA9DCHIaogp/8jJAlIaUUpRoFUv6aBZHQHLhcIeHSF51fZQoaAZoCWgPQwhyhuKOt4xiQJSGlFKUaBVN6ANoFkdAcuF6lchTwXV9lChoBmgJaA9DCPSpY5XSaV5AlIaUUpRoFU3oA2gWR0By4yNKh+OPdX2UKGgGaAloD0MIVkj5SbUcYUCUhpRSlGgVTegDaBZHQHLk9ECvHLl1fZQoaAZoCWgPQwjbM0sC1C1iQJSGlFKUaBVN6ANoFkdAcutI3R5TqHV9lChoBmgJaA9DCDcawFsgQlZAlIaUUpRoFU3oA2gWR0By9ofs/pt8dX2UKGgGaAloD0MIjGSPUDNDWECUhpRSlGgVTegDaBZHQHL3enl4keJ1fZQoaAZoCWgPQwg3xeOiWldYQJSGlFKUaBVN6ANoFkdAcwvP5HmRvHV9lChoBmgJaA9DCCb9vRQerENAlIaUUpRoFU3oA2gWR0BzIhJL/S6UdX2UKGgGaAloD0MI393KEp1BYUCUhpRSlGgVTegDaBZHQHMnIB7u2JB1fZQoaAZoCWgPQwgCRSxi2O9gQJSGlFKUaBVN6ANoFkdAczt1D0Dlo3V9lChoBmgJaA9DCLXEymjk0V9AlIaUUpRoFU3oA2gWR0BzR3m+0w8GdX2UKGgGaAloD0MIIGPuWkJ/YECUhpRSlGgVTegDaBZHQHNTsyeqaPV1fZQoaAZoCWgPQwgyyjMvBxdhQJSGlFKUaBVN6ANoFkdAc13FwT/Q0HV9lChoBmgJaA9DCKHzGrvEGWVAlIaUUpRoFU3oA2gWR0BzYd6dDpkgdX2UKGgGaAloD0MIaMu5FNcmZECUhpRSlGgVTegDaBZHQHNwriqABkt1fZQoaAZoCWgPQwglehnFcutbQJSGlFKUaBVN6ANoFkdAc8eVwPy08nV9lChoBmgJaA9DCLXEymjkfGBAlIaUUpRoFU3oA2gWR0Bzx6U2UB4mdX2UKGgGaAloD0MIXcKht3ifYECUhpRSlGgVTegDaBZHQHPJczEaVD91fZQoaAZoCWgPQwh88UV7vBlhQJSGlFKUaBVN6ANoFkdAc8tbNr0rb3V9lChoBmgJaA9DCLu04bA0RFlAlIaUUpRoFU3oA2gWR0Bz0dfZ26kJdX2UKGgGaAloD0MIZhah2AokY0CUhpRSlGgVTegDaBZHQHPdvxH5Jsh1fZQoaAZoCWgPQwjg929enDZdQJSGlFKUaBVN6ANoFkdAc97o3rD633V9lChoBmgJaA9DCDIcz2dADSFAlIaUUpRoFU0HAWgWR0Bz68NRWLgodX2UKGgGaAloD0MIXOhKBCo9ZECUhpRSlGgVTegDaBZHQHPxyN4qwyJ1fZQoaAZoCWgPQwj0+pP43AJhQJSGlFKUaBVN6ANoFkdAdAVtxuKoAHV9lChoBmgJaA9DCIOieQCLFWdAlIaUUpRoFU3oA2gWR0B0CZJaq0dBdX2UKGgGaAloD0MIe9tMhXgMX0CUhpRSlGgVTegDaBZHQHQZL5hz/6x1fZQoaAZoCWgPQwjpSC7/oSVlQJSGlFKUaBVN6ANoFkdAdCK6z3RG+nV9lChoBmgJaA9DCJZ31QPm02FAlIaUUpRoFU3oA2gWR0B0LNxS5y2hdX2UKGgGaAloD0MIxlG5idraYUCUhpRSlGgVTegDaBZHQHQ1es5n14B1fZQoaAZoCWgPQwipTZzc7w9kQJSGlFKUaBVN6ANoFkdAdDkQDFId2nV9lChoBmgJaA9DCMP1KFyPX2JAlIaUUpRoFU3oA2gWR0B0RYKjSG8FdX2UKGgGaAloD0MIMPFHUediYkCUhpRSlGgVTegDaBZHQHSOUg8r7O51fZQoaAZoCWgPQwgS9YJPczI9QJSGlFKUaBVL8mgWR0B0jydDpkf+dX2UKGgGaAloD0MIAYi7epWCZECUhpRSlGgVTegDaBZHQHSQMzhxYJV1fZQoaAZoCWgPQwhOf/YjxUJiQJSGlFKUaBVN6ANoFkdAdJIenhsImnV9lChoBmgJaA9DCNWzIJT3yGNAlIaUUpRoFU3oA2gWR0B0mQc+7lJZdX2UKGgGaAloD0MI7+U+OYqcYkCUhpRSlGgVTegDaBZHQHSk4Z2pyZN1fZQoaAZoCWgPQwjiP91AgUZdQJSGlFKUaBVN6ANoFkdAdKXcRDkU9XV9lChoBmgJaA9DCEJ4tHFEvGBAlIaUUpRoFU3oA2gWR0B0szUoa1kUdX2UKGgGaAloD0MIWAG+2zxXZkCUhpRSlGgVTegDaBZHQHS5TA8B+4N1fZQoaAZoCWgPQwjHndLB+sBbQJSGlFKUaBVN6ANoFkdAdMyT5ftx/HV9lChoBmgJaA9DCINsWb4urGJAlIaUUpRoFU3oA2gWR0B00XaYeDFqdX2UKGgGaAloD0MIUTOkimKOZkCUhpRSlGgVTegDaBZHQHTiMP4EfT11fZQoaAZoCWgPQwgs1nCRe4hhQJSGlFKUaBVN6ANoFkdAdOw4b0e2eHV9lChoBmgJaA9DCFCqfTqeqGJAlIaUUpRoFU3oA2gWR0B0+KslsxfwdX2UKGgGaAloD0MInS/2XvwAZ0CUhpRSlGgVTegDaBZHQHUHAvpQk5Z1fZQoaAZoCWgPQwiSzVXznJlhQJSGlFKUaBVN6ANoFkdAdRYF/QSi/XV9lChoBmgJaA9DCNo7o61KFGRAlIaUUpRoFU3oA2gWR0B1K1sKsuFpdX2UKGgGaAloD0MIx0j2CLULYkCUhpRSlGgVTegDaBZHQHUsKF23azx1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVOQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjIQvaG9tZS9ub3JiZXJ0Ly5jYWNoZS9weXBvZXRyeS92aXJ0dWFsZW52cy9kZWVwLXJsLWNsYXNzLVV0UWJJWU1ULXB5My45L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIQvaG9tZS9ub3JiZXJ0Ly5jYWNoZS9weXBvZXRyeS92aXJ0dWFsZW52cy9kZWVwLXJsLWNsYXNzLVV0UWJJWU1ULXB5My45L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO-MlpPolicy-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57e4606851140862f32e565211b9f6fd758a99b4cb56add139ce612b7fc30095
|
3 |
+
size 84829
|
PPO-MlpPolicy-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:677a8b4644129197752a99795c2072dde46beefa2ad612bb40e8d3339f4581e9
|
3 |
+
size 43201
|
PPO-MlpPolicy-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-MlpPolicy-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-40-generic-x86_64-with-glibc2.31 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022
|
2 |
+
Python: 3.9.12
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.22.3
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 234.34 +/- 20.06
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2eb024af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2eb024b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2eb024c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2eb024ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fa2eb024d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fa2eb024dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2eb024e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa2eb024ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2eb024f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2eb028040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2eb0280d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa2eb376e00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651676383.2524848, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVOQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjIQvaG9tZS9ub3JiZXJ0Ly5jYWNoZS9weXBvZXRyeS92aXJ0dWFsZW52cy9kZWVwLXJsLWNsYXNzLVV0UWJJWU1ULXB5My45L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIQvaG9tZS9ub3JiZXJ0Ly5jYWNoZS9weXBvZXRyeS92aXJ0dWFsZW52cy9kZWVwLXJsLWNsYXNzLVV0UWJJWU1ULXB5My45L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDbJD1Pej+8UsXuPGrjYbzh+689gh1dPgAAgD8AAIA/M9vyu7/Ksz8gLkC/PEWPvrnQDDxuIC4+AAAAAAAAAACanAK9pJBqOv6UtTwAGsI7n2wyu7hd07wAAAAAAAAAAAboOD7DxD28j/kWO4vkRLnVOcC9o5kcugAAgD8AAIA/zUwdPY+CY7oFKxI7ZM7JtT+p7rqONsK0AACAPwAAgD+akcq7yDywP7dIwL2DC5i+kzqnOYLXsjwAAAAAAAAAAEAqtT32DCq62VI/vNAoCrVbiMw6Aw6DNAAAgD8AAIA/cye2vY/eVbpm8KM7rhZftiE5tDmSG1K1AACAPwAAgD/zwcI9Hz3SuRhAA7wM0fk1U7oHt11+Z7UAAIA/AACAPzOjQzvhDJm6j+tJvBsQHbbMIXE6UqqKNQAAgD8AAIA/Wl+ZvSnATboWBW25cD3jtPHgPTsYUIc4AACAPwAAgD8za207KUBqusGyRzrN52w07Q4Cupr/Y7kAAIA/AACAP8AiuD2uJ624T7avO8C57Ta2fMs7lVnTugAAgD8AAIA/s0qFPWzVND9hgQy9SUu3vlB7gT0eaP08AAAAAAAAAAAzqNI9j3Y8umvHW7t2O2g4CclBuz7j7jkAAIA/AACAPwCefL1cwza6RqiQO+tCoTgjbRK6nr8sugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvFzEd2K3WECUhpRSlIwBbJRN6AOMAXSUR0BwPvQE6kqMdX2UKGgGaAloD0MII2k3+pisVUCUhpRSlGgVTegDaBZHQHBL6Z+hGpd1fZQoaAZoCWgPQwjYg0nx8QZeQJSGlFKUaBVN6ANoFkdAcEz2V3Ux23V9lChoBmgJaA9DCInPnWD/bV1AlIaUUpRoFU3oA2gWR0BwZNtm+TNddX2UKGgGaAloD0MIwoh9AijIYECUhpRSlGgVTegDaBZHQHBoL0aqCH11fZQoaAZoCWgPQwgudZDXg9JiQJSGlFKUaBVN6ANoFkdAcGtTvRZ2ZHV9lChoBmgJaA9DCGKjrN9MpmJAlIaUUpRoFU3oA2gWR0BwepkUbkwOdX2UKGgGaAloD0MIGJmAX6NUYkCUhpRSlGgVTegDaBZHQHB/K/20zCV1fZQoaAZoCWgPQwg6lKEqJsxhQJSGlFKUaBVN6ANoFkdAcJHawD/2kHV9lChoBmgJaA9DCF6AfXTqehhAlIaUUpRoFU0IAWgWR0BwmDPTodMkdX2UKGgGaAloD0MItDwP7s7jW0CUhpRSlGgVTegDaBZHQHCcq/mDDj11fZQoaAZoCWgPQwgx0SAFT6NfQJSGlFKUaBVN6ANoFkdAcKfqD9OymnV9lChoBmgJaA9DCPnbniAxnmRAlIaUUpRoFU3oA2gWR0Bwr4xBVuJldX2UKGgGaAloD0MIO2743XQ+XECUhpRSlGgVTegDaBZHQHCxslXzUZx1fZQoaAZoCWgPQwj99QoL7jpYQJSGlFKUaBVN6ANoFkdAcRxJuEVWS3V9lChoBmgJaA9DCMrC19c6KGJAlIaUUpRoFU3oA2gWR0BxHmk8A7xNdX2UKGgGaAloD0MIKZSFr68hYkCUhpRSlGgVTegDaBZHQHEgxGYrrgR1fZQoaAZoCWgPQwh2HD9UGgthQJSGlFKUaBVN6ANoFkdAcSjDOkcjq3V9lChoBmgJaA9DCE91yM3wKmNAlIaUUpRoFU3oA2gWR0BxN3/T9bX6dX2UKGgGaAloD0MIYYicvp7MWUCUhpRSlGgVTegDaBZHQHE4xBmf5DZ1fZQoaAZoCWgPQwhhNCvbhz1aQJSGlFKUaBVN6ANoFkdAcVHajvd/KHV9lChoBmgJaA9DCNRDNLqDjWBAlIaUUpRoFU3oA2gWR0BxVU/lhgE2dX2UKGgGaAloD0MIyXVTyutcYkCUhpRSlGgVTegDaBZHQHFozJdSl311fZQoaAZoCWgPQwjswg/Op7BZQJSGlFKUaBVN6ANoFkdAcW21MdtEX3V9lChoBmgJaA9DCFngK7r1iEtAlIaUUpRoFUvoaBZHQHF+tA5aNdZ1fZQoaAZoCWgPQwjNzTeieyxaQJSGlFKUaBVN6ANoFkdAcYFH4XXRPXV9lChoBmgJaA9DCCFAho4d1WNAlIaUUpRoFU3oA2gWR0Bxh84Ia99MdX2UKGgGaAloD0MIIvsgy4JIX0CUhpRSlGgVTegDaBZHQHGMtUXHim51fZQoaAZoCWgPQwiP/wJBgLtjQJSGlFKUaBVN6ANoFkdAcZd7zkIX03V9lChoBmgJaA9DCF2MgXUcvGJAlIaUUpRoFU3oA2gWR0BxnedhAnlXdX2UKGgGaAloD0MIaw2l9iKGXUCUhpRSlGgVTegDaBZHQHGftTtLL6l1fZQoaAZoCWgPQwjG/UemQ/FIQJSGlFKUaBVNCAFoFkdAcbDrSmZVn3V9lChoBmgJaA9DCAKEDyVabVdAlIaUUpRoFU3oA2gWR0ByAXViF0xNdX2UKGgGaAloD0MI0a+tn/5zW0CUhpRSlGgVTegDaBZHQHIDjaXa8Hx1fZQoaAZoCWgPQwhw7q8ed1xkQJSGlFKUaBVN6ANoFkdAcgXcTakAP3V9lChoBmgJaA9DCIKOVrWkYFtAlIaUUpRoFU3oA2gWR0ByDeUFB6a9dX2UKGgGaAloD0MIQPuRIrLwYkCUhpRSlGgVTegDaBZHQHIcb8WKuSx1fZQoaAZoCWgPQwjzc0NTdl5gQJSGlFKUaBVN6ANoFkdAch2cDKYAsHV9lChoBmgJaA9DCBvyzwziTl1AlIaUUpRoFU3oA2gWR0ByNXiyY5T7dX2UKGgGaAloD0MINlt5yX/mYUCUhpRSlGgVTegDaBZHQHJM8/D+BH11fZQoaAZoCWgPQwh9eJYgozVlQJSGlFKUaBVN6ANoFkdAclHWsRxtHnV9lChoBmgJaA9DCBHiytk7vFRAlIaUUpRoFU3oA2gWR0ByYz+bVjI8dX2UKGgGaAloD0MIMxZNZyeIXECUhpRSlGgVTegDaBZHQHJlp13dKul1fZQoaAZoCWgPQwj8GHPXkpdgQJSGlFKUaBVN6ANoFkdAcm/+L3sXznV9lChoBmgJaA9DCI+qJoi67WFAlIaUUpRoFU3oA2gWR0ByezGYKIBSdX2UKGgGaAloD0MIthFPdrPoYUCUhpRSlGgVTegDaBZHQHKCMzyjHn51fZQoaAZoCWgPQwhvnBTmPUlbQJSGlFKUaBVN6ANoFkdAcoQuqFRHgHV9lChoBmgJaA9DCNNsHofBOExAlIaUUpRoFUvjaBZHQHKIVaGHpKV1fZQoaAZoCWgPQwiVDABV3MFbQJSGlFKUaBVN6ANoFkdAcpYnDiwSrnV9lChoBmgJaA9DCHIaogp/8jJAlIaUUpRoFUv6aBZHQHLhcIeHSF51fZQoaAZoCWgPQwhyhuKOt4xiQJSGlFKUaBVN6ANoFkdAcuF6lchTwXV9lChoBmgJaA9DCPSpY5XSaV5AlIaUUpRoFU3oA2gWR0By4yNKh+OPdX2UKGgGaAloD0MIVkj5SbUcYUCUhpRSlGgVTegDaBZHQHLk9ECvHLl1fZQoaAZoCWgPQwjbM0sC1C1iQJSGlFKUaBVN6ANoFkdAcutI3R5TqHV9lChoBmgJaA9DCDcawFsgQlZAlIaUUpRoFU3oA2gWR0By9ofs/pt8dX2UKGgGaAloD0MIjGSPUDNDWECUhpRSlGgVTegDaBZHQHL3enl4keJ1fZQoaAZoCWgPQwg3xeOiWldYQJSGlFKUaBVN6ANoFkdAcwvP5HmRvHV9lChoBmgJaA9DCCb9vRQerENAlIaUUpRoFU3oA2gWR0BzIhJL/S6UdX2UKGgGaAloD0MI393KEp1BYUCUhpRSlGgVTegDaBZHQHMnIB7u2JB1fZQoaAZoCWgPQwgCRSxi2O9gQJSGlFKUaBVN6ANoFkdAczt1D0Dlo3V9lChoBmgJaA9DCLXEymjk0V9AlIaUUpRoFU3oA2gWR0BzR3m+0w8GdX2UKGgGaAloD0MIIGPuWkJ/YECUhpRSlGgVTegDaBZHQHNTsyeqaPV1fZQoaAZoCWgPQwgyyjMvBxdhQJSGlFKUaBVN6ANoFkdAc13FwT/Q0HV9lChoBmgJaA9DCKHzGrvEGWVAlIaUUpRoFU3oA2gWR0BzYd6dDpkgdX2UKGgGaAloD0MIaMu5FNcmZECUhpRSlGgVTegDaBZHQHNwriqABkt1fZQoaAZoCWgPQwglehnFcutbQJSGlFKUaBVN6ANoFkdAc8eVwPy08nV9lChoBmgJaA9DCLXEymjkfGBAlIaUUpRoFU3oA2gWR0Bzx6U2UB4mdX2UKGgGaAloD0MIXcKht3ifYECUhpRSlGgVTegDaBZHQHPJczEaVD91fZQoaAZoCWgPQwh88UV7vBlhQJSGlFKUaBVN6ANoFkdAc8tbNr0rb3V9lChoBmgJaA9DCLu04bA0RFlAlIaUUpRoFU3oA2gWR0Bz0dfZ26kJdX2UKGgGaAloD0MIZhah2AokY0CUhpRSlGgVTegDaBZHQHPdvxH5Jsh1fZQoaAZoCWgPQwjg929enDZdQJSGlFKUaBVN6ANoFkdAc97o3rD633V9lChoBmgJaA9DCDIcz2dADSFAlIaUUpRoFU0HAWgWR0Bz68NRWLgodX2UKGgGaAloD0MIXOhKBCo9ZECUhpRSlGgVTegDaBZHQHPxyN4qwyJ1fZQoaAZoCWgPQwj0+pP43AJhQJSGlFKUaBVN6ANoFkdAdAVtxuKoAHV9lChoBmgJaA9DCIOieQCLFWdAlIaUUpRoFU3oA2gWR0B0CZJaq0dBdX2UKGgGaAloD0MIe9tMhXgMX0CUhpRSlGgVTegDaBZHQHQZL5hz/6x1fZQoaAZoCWgPQwjpSC7/oSVlQJSGlFKUaBVN6ANoFkdAdCK6z3RG+nV9lChoBmgJaA9DCJZ31QPm02FAlIaUUpRoFU3oA2gWR0B0LNxS5y2hdX2UKGgGaAloD0MIxlG5idraYUCUhpRSlGgVTegDaBZHQHQ1es5n14B1fZQoaAZoCWgPQwipTZzc7w9kQJSGlFKUaBVN6ANoFkdAdDkQDFId2nV9lChoBmgJaA9DCMP1KFyPX2JAlIaUUpRoFU3oA2gWR0B0RYKjSG8FdX2UKGgGaAloD0MIMPFHUediYkCUhpRSlGgVTegDaBZHQHSOUg8r7O51fZQoaAZoCWgPQwgS9YJPczI9QJSGlFKUaBVL8mgWR0B0jydDpkf+dX2UKGgGaAloD0MIAYi7epWCZECUhpRSlGgVTegDaBZHQHSQMzhxYJV1fZQoaAZoCWgPQwhOf/YjxUJiQJSGlFKUaBVN6ANoFkdAdJIenhsImnV9lChoBmgJaA9DCNWzIJT3yGNAlIaUUpRoFU3oA2gWR0B0mQc+7lJZdX2UKGgGaAloD0MI7+U+OYqcYkCUhpRSlGgVTegDaBZHQHSk4Z2pyZN1fZQoaAZoCWgPQwjiP91AgUZdQJSGlFKUaBVN6ANoFkdAdKXcRDkU9XV9lChoBmgJaA9DCEJ4tHFEvGBAlIaUUpRoFU3oA2gWR0B0szUoa1kUdX2UKGgGaAloD0MIWAG+2zxXZkCUhpRSlGgVTegDaBZHQHS5TA8B+4N1fZQoaAZoCWgPQwjHndLB+sBbQJSGlFKUaBVN6ANoFkdAdMyT5ftx/HV9lChoBmgJaA9DCINsWb4urGJAlIaUUpRoFU3oA2gWR0B00XaYeDFqdX2UKGgGaAloD0MIUTOkimKOZkCUhpRSlGgVTegDaBZHQHTiMP4EfT11fZQoaAZoCWgPQwgs1nCRe4hhQJSGlFKUaBVN6ANoFkdAdOw4b0e2eHV9lChoBmgJaA9DCFCqfTqeqGJAlIaUUpRoFU3oA2gWR0B0+KslsxfwdX2UKGgGaAloD0MInS/2XvwAZ0CUhpRSlGgVTegDaBZHQHUHAvpQk5Z1fZQoaAZoCWgPQwiSzVXznJlhQJSGlFKUaBVN6ANoFkdAdRYF/QSi/XV9lChoBmgJaA9DCNo7o61KFGRAlIaUUpRoFU3oA2gWR0B1K1sKsuFpdX2UKGgGaAloD0MIx0j2CLULYkCUhpRSlGgVTegDaBZHQHUsKF23azx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVOQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjIQvaG9tZS9ub3JiZXJ0Ly5jYWNoZS9weXBvZXRyeS92aXJ0dWFsZW52cy9kZWVwLXJsLWNsYXNzLVV0UWJJWU1ULXB5My45L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIQvaG9tZS9ub3JiZXJ0Ly5jYWNoZS9weXBvZXRyeS92aXJ0dWFsZW52cy9kZWVwLXJsLWNsYXNzLVV0UWJJWU1ULXB5My45L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-40-generic-x86_64-with-glibc2.31 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022", "Python": "3.9.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdf19402e35870851e827f8576bc234bd9fcd9dfe51703dec4e6f43176a6b28c
|
3 |
+
size 253018
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 234.3412201931451, "std_reward": 20.062735956646836, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T17:13:50.871014"}
|