Upload Segformer.py
Browse files- Segformer.py +205 -0
Segformer.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras.layers import Conv2d,LayerNormalization,ZeroPadding2D,UpSampling2D,Activation
|
3 |
+
from tensorflow.keras import Model
|
4 |
+
from einops import rearrange
|
5 |
+
from math import sqrt
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
# helpers
|
9 |
+
|
10 |
+
def exists(val):
|
11 |
+
return val is not None
|
12 |
+
|
13 |
+
def cast_tuple(val, depth):
|
14 |
+
return val if isinstance(val, tuple) else (val,) * depth
|
15 |
+
|
16 |
+
# classes
|
17 |
+
|
18 |
+
class DsConv2d:
|
19 |
+
def __init__(self, dim_in, dim_out, kernel_size, padding, stride = 1, bias = True):
|
20 |
+
self.net = tf.keras.Sequential()
|
21 |
+
self.net.add(Conv2d(dim_in, kernel_size = kernel_size, strides = stride, use_bias = bias))
|
22 |
+
self.net.add(ZeroPadding2D(padding))
|
23 |
+
self.net.add(Conv2d(dim_out, kernel_size = 1, use_bias = bias))
|
24 |
+
|
25 |
+
def __call__(self, x):
|
26 |
+
return self.net(x)
|
27 |
+
|
28 |
+
class LayerNorm:
|
29 |
+
def __init__(self, dim, eps = 1e-5):
|
30 |
+
self.eps = eps
|
31 |
+
self.g = tf.Variable(tf.ones((1, dim, 1, 1)))
|
32 |
+
self.b = tf.Variable(tf.zeros((1, dim, 1, 1)))
|
33 |
+
|
34 |
+
def __call__(self, x):
|
35 |
+
std = tf.math.sqrt(tf.math.reduce_variance(x, axis=1, keepdims=True))
|
36 |
+
mean = tf.reduce_mean(x, axis= 1, keepdim = True)
|
37 |
+
return (x - mean) / (std + self.eps) * self.g + self.b
|
38 |
+
|
39 |
+
class PreNorm:
|
40 |
+
def __init__(self, dim, fn):
|
41 |
+
self.fn = fn
|
42 |
+
self.norm = LayerNormalization()
|
43 |
+
|
44 |
+
def __call__(self, x):
|
45 |
+
return self.fn(self.norm(x))
|
46 |
+
|
47 |
+
class EfficientSelfAttention:
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
dim,
|
51 |
+
heads,
|
52 |
+
reduction_ratio
|
53 |
+
):
|
54 |
+
self.scale = (dim // heads) ** -0.5
|
55 |
+
self.heads = heads
|
56 |
+
|
57 |
+
self.to_q = Conv2d(dim, 1, use_bias = False)
|
58 |
+
self.to_kv = Conv2d(dim * 2, reduction_ratio, strides = reduction_ratio, use_bias = False)
|
59 |
+
self.to_out = Conv2d(dim, 1, use_bias = False)
|
60 |
+
|
61 |
+
def __call__(self, x):
|
62 |
+
h, w = x.shape[1], x.shape[2]
|
63 |
+
heads = self.heads
|
64 |
+
|
65 |
+
q, k, v = (self.to_q(x), *tf.split(self.to_kv(x), num_or_size_splits=2, axis=-1))
|
66 |
+
q, k, v = map(lambda t: rearrange(t, 'b x y (h c) -> (b h) (x y) c', h = heads), (q, k, v))
|
67 |
+
|
68 |
+
sim = tf.einsum('b i d, b j d -> b i j', q, k) * self.scale
|
69 |
+
attn = tf.nn.softmax(sim)
|
70 |
+
|
71 |
+
out = tf.einsum('b i j, b j d -> b i d', attn, v)
|
72 |
+
out = rearrange(out, '(b h) (x y) c -> b x y (h c)', h = heads, x = h, y = w)
|
73 |
+
return self.to_out(out)
|
74 |
+
|
75 |
+
class MixFeedForward:
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
dim,
|
79 |
+
expansion_factor
|
80 |
+
):
|
81 |
+
hidden_dim = dim * expansion_factor
|
82 |
+
self.net = tf.keras.Sequential()
|
83 |
+
self.net.add(Conv2d(hidden_dim, 1))
|
84 |
+
self.net.add(DsConv2d(hidden_dim, hidden_dim, 3, padding = 1))
|
85 |
+
self.net.add(Activation('gelu'))
|
86 |
+
self.net.add(Conv2d(dim, 1))
|
87 |
+
|
88 |
+
def __call__(self, x):
|
89 |
+
return self.net(x)
|
90 |
+
|
91 |
+
class Unfold:
|
92 |
+
def __init__(self, kernel, stride, padding):
|
93 |
+
self.kernel = kernel
|
94 |
+
self.stride = stride
|
95 |
+
self.padding = padding
|
96 |
+
self.zeropadding2d = ZeroPadding2D(padding)
|
97 |
+
|
98 |
+
def __call__(self, x):
|
99 |
+
x = self.zeropadding2d(x)
|
100 |
+
x = tf.image.extract_patches(x, sizes=[1, self.kernel, self.kernel, 1], strides=[1, self.stride, self.stride, 1], rates=[1, 1, 1, 1], padding='VALID')
|
101 |
+
x = tf.reshape(x, (x.shape[0], -1, x.shape[-1]))
|
102 |
+
return x
|
103 |
+
|
104 |
+
class MiT:
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
channels,
|
108 |
+
dims,
|
109 |
+
heads,
|
110 |
+
ff_expansion,
|
111 |
+
reduction_ratio,
|
112 |
+
num_layers
|
113 |
+
):
|
114 |
+
stage_kernel_stride_pad = ((7, 4, 3), (3, 2, 1), (3, 2, 1), (3, 2, 1))
|
115 |
+
|
116 |
+
dims = (channels, *dims)
|
117 |
+
dim_pairs = list(zip(dims[:-1], dims[1:]))
|
118 |
+
|
119 |
+
self.stages = []
|
120 |
+
|
121 |
+
for (dim_in, dim_out), (kernel, stride, padding), num_layers, ff_expansion, heads, reduction_ratio in zip(dim_pairs, stage_kernel_stride_pad, num_layers, ff_expansion, heads, reduction_ratio):
|
122 |
+
get_overlap_patches = Unfold(kernel, stride, padding)
|
123 |
+
overlap_patch_embed = Conv2d(dim_out, 1)
|
124 |
+
|
125 |
+
layers = []
|
126 |
+
|
127 |
+
for _ in range(num_layers):
|
128 |
+
layers.append([
|
129 |
+
PreNorm(dim_out, EfficientSelfAttention(dim = dim_out, heads = heads, reduction_ratio = reduction_ratio)),
|
130 |
+
PreNorm(dim_out, MixFeedForward(dim = dim_out, expansion_factor = ff_expansion)),
|
131 |
+
])
|
132 |
+
|
133 |
+
self.stages.append([
|
134 |
+
get_overlap_patches,
|
135 |
+
overlap_patch_embed,
|
136 |
+
layers
|
137 |
+
])
|
138 |
+
|
139 |
+
def __call__(
|
140 |
+
self,
|
141 |
+
x,
|
142 |
+
return_layer_outputs = False
|
143 |
+
):
|
144 |
+
h, w = x.shape[1], x.shape[2]
|
145 |
+
|
146 |
+
layer_outputs = []
|
147 |
+
for (get_overlap_patches, overlap_embed, layers) in self.stages:
|
148 |
+
x = get_overlap_patches(x)
|
149 |
+
|
150 |
+
num_patches = x.shape[-2]
|
151 |
+
ratio = int(sqrt((h * w) / num_patches))
|
152 |
+
x = rearrange(x, 'b (h w) c -> b h w c', h = h // ratio)
|
153 |
+
|
154 |
+
x = overlap_embed(x)
|
155 |
+
for (attn, ff) in layers:
|
156 |
+
x = attn(x) + x
|
157 |
+
x = ff(x) + x
|
158 |
+
|
159 |
+
layer_outputs.append(x)
|
160 |
+
|
161 |
+
ret = x if not return_layer_outputs else layer_outputs
|
162 |
+
return ret
|
163 |
+
|
164 |
+
class Segformer(Model):
|
165 |
+
def __init__(
|
166 |
+
self,
|
167 |
+
dims = (32, 64, 160, 256),
|
168 |
+
heads = (1, 2, 5, 8),
|
169 |
+
ff_expansion = (8, 8, 4, 4),
|
170 |
+
reduction_ratio = (8, 4, 2, 1),
|
171 |
+
num_layers = 2,
|
172 |
+
channels = 3,
|
173 |
+
decoder_dim = 256,
|
174 |
+
num_classes = 4
|
175 |
+
):
|
176 |
+
super(Segformer, self).__init__()
|
177 |
+
dims, heads, ff_expansion, reduction_ratio, num_layers = map(partial(cast_tuple, depth = 4), (dims, heads, ff_expansion, reduction_ratio, num_layers))
|
178 |
+
assert all([*map(lambda t: len(t) == 4, (dims, heads, ff_expansion, reduction_ratio, num_layers))]), 'only four stages are allowed, all keyword arguments must be either a single value or a tuple of 4 values'
|
179 |
+
|
180 |
+
self.mit = MiT(
|
181 |
+
channels = channels,
|
182 |
+
dims = dims,
|
183 |
+
heads = heads,
|
184 |
+
ff_expansion = ff_expansion,
|
185 |
+
reduction_ratio = reduction_ratio,
|
186 |
+
num_layers = num_layers
|
187 |
+
)
|
188 |
+
|
189 |
+
self.to_fused = []
|
190 |
+
for i, dim in enumerate(dims):
|
191 |
+
to_fused = tf.keras.Sequential()
|
192 |
+
to_fused.add(Conv2d(decoder_dim, 1))
|
193 |
+
to_fused.add(UpSampling2D(2 ** i))
|
194 |
+
self.to_fused.append(to_fused)
|
195 |
+
|
196 |
+
self.to_segmentation = tf.keras.Sequential()
|
197 |
+
self.to_segmentation.add(Conv2d(decoder_dim, 1))
|
198 |
+
self.to_segmentation.add(Conv2d(num_classes, 1))
|
199 |
+
|
200 |
+
def __call__(self, x):
|
201 |
+
layer_outputs = self.mit(x, return_layer_outputs = True)
|
202 |
+
|
203 |
+
fused = [to_fused(output) for output, to_fused in zip(layer_outputs, self.to_fused)]
|
204 |
+
fused = tf.concat(fused, axis = -1)
|
205 |
+
return self.to_segmentation(fused)
|