File size: 9,293 Bytes
eea7db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36504b4
eea7db7
 
 
 
 
 
 
 
 
36504b4
 
 
 
 
 
 
 
 
 
 
 
eea7db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import tensorflow as tf
from tensorflow.keras.layers import Dense,Conv1d,ZeroPadding1D,LayerNormalization
from tensorflow.keras import Model
import base64
import gzip
import numpy as np
from typing import Union


class ModelDimensions:
    n_mels: int
    n_audio_ctx: int
    n_audio_state: int
    n_audio_head: int
    n_audio_layer: int
    n_vocab: int
    n_text_ctx: int
    n_text_state: int
    n_text_head: int
    n_text_layer: int


def sinusoids(length, channels, max_timescale=10000):
    """Returns sinusoids for positional embedding"""
    assert channels % 2 == 0
    log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
    inv_timescales = tf.math.exp(-log_timescale_increment * np.arange(channels // 2))
    scaled_time = np.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
    return tf.concat([tf.math.sin(scaled_time), tf.math.cos(scaled_time)], axis=1)


class LayerNorm:
    def __init__(self, n_state):
        self.layer_norm = LayerNormalization
        
    def __call__(self, x):
        return tf.cast(self.layer_norm(tf.cast(x, 'float32')), x.dtype)


class MultiHeadAttention:
    def __init__(self, n_state: int, n_head: int):
        self.n_head = n_head
        self.query = Dense(n_state)
        self.key = Dense(n_state, use_bias=False)
        self.value = Dense(n_state)
        self.out = Dense(n_state)

    def __call__(
        self,
        x,
        xa=None,
        mask=None,
        kv_cache=None,
    ):
        q = self.query(x)

        if xa is None:
            k = self.key(x)
            v = self.value(x)
            if kv_cache is not None:
                k = tf.concat([kv_cache[0], k], axis=1)
                v = tf.concat([kv_cache[1], v], axis=1)
        elif kv_cache is None:
            k = self.key(xa)
            v = self.value(xa)
        else:
            k, v = kv_cache

        wv, qk = self.qkv_attention(q, k, v, mask)
        return self.out(wv), (k, v), qk

    def qkv_attention(self, q, k, v, mask=None):
        n_batch, n_ctx, n_state = q.shape
        scale = (n_state // self.n_head) ** -0.25
        q = q.reshape(*q.shape[:2], self.n_head, -1).transpose(0, 2, 1, 3) * scale
        k = k.reshape(*k.shape[:2], self.n_head, -1).transpose(0, 2, 3, 1) * scale
        v = v.reshape(*v.shape[:2], self.n_head, -1).transpose(0, 2, 1, 3)

        qk = tf.matmul(q, k)
        if mask is not None:
            qk = qk + mask[:n_ctx, :n_ctx]
        qk = tf.cast(qk, tf.float32)

        w = tf.cast(tf.nn.softmax(qk, axis=-1), q.dtype)
        out = tf.transpose(tf.matmul(w, v), (0, 2, 1, 3))
        out = tf.reshape(out, (n_batch, n_ctx, n_state))
        return out, qk


class ResidualAttentionBlock:
    def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
        self.attn = MultiHeadAttention(n_state, n_head)
        self.attn_ln = LayerNorm(n_state)

        self.cross_attn = (
            MultiHeadAttention(n_state, n_head) if cross_attention else None
        )
        self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None

        n_mlp = n_state * 4
        self.mlp1 = Dense(n_mlp)
        self.mlp2 = Dense(n_state)
        self.mlp_ln = LayerNorm(n_state)

    def __call__(self, x, xa=None, mask=None, kv_cache=None):
        kv, cross_kv = kv_cache if kv_cache else (None, None)
        y, kv, _ = self.attn(self.attn_ln(x), mask=mask, kv_cache=kv)
        x += y
        cross_qk = None
        if self.cross_attn:
            y, cross_kv, cross_qk = self.cross_attn(
                self.cross_attn_ln(x), xa, kv_cache=cross_kv
            )
            x += y
        x = x + tf.cast(self.mlp2(tf.nn.gelu(self.mlp1(self.mlp_ln(x))), x.dtype))
        return x, (kv, cross_kv), cross_qk


class AudioEncoder:
    def __init__(
        self,
        n_mels: int,
        n_ctx: int,
        n_state: int,
        n_head: int,
        n_layer: int,
        dtype = tf.float16,
    ):
        self.zeropadding1d1 = ZeroPadding1D(padding=1)
        self.conv1 = Conv1d(filters=n_state, kernel_size=3)
        self.zeropadding1d2 = ZeroPadding1D(padding=1)
        self.conv2 = Conv1d(filters=n_state, kernel_size=3, strides=2)
        self._positional_embedding = tf.cast(sinusoids(n_ctx, n_state), dtype)

        self.blocks = [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
        self.ln_post = LayerNorm(n_state)

    def __call__(self, x):
        x = self.zeropadding1d1(x)
        x = tf.cast(tf.nn.gelu(self.conv1(x)), x.dtype)
        x = self.zeropadding1d2(x)
        x = tf.cast(tf.nn.gelu(self.conv2(x)), x.dtype)
        assert x.shape[1:] == self._positional_embedding.shape, "incorrect audio shape"
        x = x + self._positional_embedding

        for block in self.blocks:
            x, _, _ = block(x)

        x = self.ln_post(x)
        return x


class TextDecoder(tf.keras.layers.Layer):
    def __init__(
        self,
        n_vocab: int,
        n_ctx: int,
        n_state: int,
        n_head: int,
        n_layer: int,
        dtype = tf.float16,
    ):
        self.token_embedding = self.add_weight(
            name='token_embedding',
            shape=[self.n_vocab, self.n_state],
            initializer=tf.keras.initializers.RandomNormal(stddev=0.02),  # 设定标准差 stddev
            trainable=True
        )
        self.positional_embedding = self.add_weight(
            name='positional_embedding',
            shape=[self.n_ctx, self.n_state],
            initializer=tf.keras.initializers.Zeros(),  # 初始化为全零
            trainable=True
        )

        self.blocks = [
            ResidualAttentionBlock(n_state, n_head, cross_attention=True)
            for _ in range(n_layer)
        ]
        self.ln = LayerNorm(n_state)
        self._mask = tf.fill((n_ctx, n_ctx), float("-inf"))
        self._mask = tf.linalg.band_part(self._mask, 0, -1)
        self._mask = tf.linalg.set_diag(self._mask, tf.zeros(n_ctx))
        self._mask = tf.cast(self._mask, dtype)

    def __call__(self, x, xa, kv_cache=None):
        """
        x : shape = (batch_size, <= n_ctx)
            the text tokens
        xa : shape = (batch_size, n_audio_ctx, n_audio_state)
            the encoded audio features to be attended on
        """
        offset = kv_cache[0][0][0].shape[1] if kv_cache else 0
        x = (
            tf.gather(self.token_embedding, x)
            + self.positional_embedding[offset : offset + x.shape[-1]]
        )

        if kv_cache is None:
            kv_cache = [None] * len(self.blocks)
        cross_qk = [None] * len(self.blocks)
        for e, block in enumerate(self.blocks):
            x, kv_cache[e], cross_qk[e] = block(
                x, xa, mask=self._mask, kv_cache=kv_cache[e]
            )

        x = self.ln(x)
        return tf.matmul(x, tf.transpose(self.token_embedding)), kv_cache, cross_qk


class Whisper(Model):
    def __init__(self, dims: ModelDimensions, dtype = tf.float16):
        super(Whisper, self).__init__()
        self.dims = dims
        self.encoder = AudioEncoder(
            self.dims.n_mels,
            self.dims.n_audio_ctx,
            self.dims.n_audio_state,
            self.dims.n_audio_head,
            self.dims.n_audio_layer,
            dtype,
        )
        self.decoder = TextDecoder(
            self.dims.n_vocab,
            self.dims.n_text_ctx,
            self.dims.n_text_state,
            self.dims.n_text_head,
            self.dims.n_text_layer,
            dtype,
        )
        # use the last half among the decoder layers for time alignment by default;
        # to use a specific set of heads, see `set_alignment_heads()` below.
        all_heads = np.zeros(
            (self.dims.n_text_layer, self.dims.n_text_head), dtype=bool
        )
        all_heads[self.dims.n_text_layer // 2 :] = True
        self.alignment_heads = tf.transpose(tf.cast(tf.where(all_heads != 0), dtype=tf.int32))

    def set_alignment_heads(self, dump: Union[bytes, np.ndarray]):
        if isinstance(dump, np.ndarray):
            self.alignment_heads = tf.convert_to_tensor(dump)
        elif isinstance(dump, bytes):
            array = np.frombuffer(
                gzip.decompress(base64.b85decode(dump)), dtype=bool
            ).copy()
            mask = array.reshape(self.dims.n_text_layer, self.dims.n_text_head)
            self.alignment_heads = tf.transpose(tf.cast(tf.where(mask != 0), dtype=tf.int32))
        else:
            raise ValueError(
                f"Invalid type for `dump`: {type(dump)}. Expected a np.ndarray or base85-encoded bytes containing"
                " alignment_head information"
            )

    def embed_audio(self, mel):
        return self.encoder(mel)

    def logits(self, tokens, audio_features):
        return self.decoder(tokens, audio_features)[0]

    def forward_with_cross_qk(self, mel, tokens):
        logits, _, cross_qk = self.decoder(tokens, self.encoder(mel))
        return logits, cross_qk

    def __call__(self, mel, tokens):
        return self.decoder(tokens, self.encoder(mel))[0]

    @property
    def is_multilingual(self):
        return self.dims.n_vocab >= 51865

    @property
    def num_languages(self):
        return self.dims.n_vocab - 51765 - int(self.is_multilingual)