File size: 9,293 Bytes
eea7db7 36504b4 eea7db7 36504b4 eea7db7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import tensorflow as tf
from tensorflow.keras.layers import Dense,Conv1d,ZeroPadding1D,LayerNormalization
from tensorflow.keras import Model
import base64
import gzip
import numpy as np
from typing import Union
class ModelDimensions:
n_mels: int
n_audio_ctx: int
n_audio_state: int
n_audio_head: int
n_audio_layer: int
n_vocab: int
n_text_ctx: int
n_text_state: int
n_text_head: int
n_text_layer: int
def sinusoids(length, channels, max_timescale=10000):
"""Returns sinusoids for positional embedding"""
assert channels % 2 == 0
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = tf.math.exp(-log_timescale_increment * np.arange(channels // 2))
scaled_time = np.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
return tf.concat([tf.math.sin(scaled_time), tf.math.cos(scaled_time)], axis=1)
class LayerNorm:
def __init__(self, n_state):
self.layer_norm = LayerNormalization
def __call__(self, x):
return tf.cast(self.layer_norm(tf.cast(x, 'float32')), x.dtype)
class MultiHeadAttention:
def __init__(self, n_state: int, n_head: int):
self.n_head = n_head
self.query = Dense(n_state)
self.key = Dense(n_state, use_bias=False)
self.value = Dense(n_state)
self.out = Dense(n_state)
def __call__(
self,
x,
xa=None,
mask=None,
kv_cache=None,
):
q = self.query(x)
if xa is None:
k = self.key(x)
v = self.value(x)
if kv_cache is not None:
k = tf.concat([kv_cache[0], k], axis=1)
v = tf.concat([kv_cache[1], v], axis=1)
elif kv_cache is None:
k = self.key(xa)
v = self.value(xa)
else:
k, v = kv_cache
wv, qk = self.qkv_attention(q, k, v, mask)
return self.out(wv), (k, v), qk
def qkv_attention(self, q, k, v, mask=None):
n_batch, n_ctx, n_state = q.shape
scale = (n_state // self.n_head) ** -0.25
q = q.reshape(*q.shape[:2], self.n_head, -1).transpose(0, 2, 1, 3) * scale
k = k.reshape(*k.shape[:2], self.n_head, -1).transpose(0, 2, 3, 1) * scale
v = v.reshape(*v.shape[:2], self.n_head, -1).transpose(0, 2, 1, 3)
qk = tf.matmul(q, k)
if mask is not None:
qk = qk + mask[:n_ctx, :n_ctx]
qk = tf.cast(qk, tf.float32)
w = tf.cast(tf.nn.softmax(qk, axis=-1), q.dtype)
out = tf.transpose(tf.matmul(w, v), (0, 2, 1, 3))
out = tf.reshape(out, (n_batch, n_ctx, n_state))
return out, qk
class ResidualAttentionBlock:
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
self.attn = MultiHeadAttention(n_state, n_head)
self.attn_ln = LayerNorm(n_state)
self.cross_attn = (
MultiHeadAttention(n_state, n_head) if cross_attention else None
)
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
n_mlp = n_state * 4
self.mlp1 = Dense(n_mlp)
self.mlp2 = Dense(n_state)
self.mlp_ln = LayerNorm(n_state)
def __call__(self, x, xa=None, mask=None, kv_cache=None):
kv, cross_kv = kv_cache if kv_cache else (None, None)
y, kv, _ = self.attn(self.attn_ln(x), mask=mask, kv_cache=kv)
x += y
cross_qk = None
if self.cross_attn:
y, cross_kv, cross_qk = self.cross_attn(
self.cross_attn_ln(x), xa, kv_cache=cross_kv
)
x += y
x = x + tf.cast(self.mlp2(tf.nn.gelu(self.mlp1(self.mlp_ln(x))), x.dtype))
return x, (kv, cross_kv), cross_qk
class AudioEncoder:
def __init__(
self,
n_mels: int,
n_ctx: int,
n_state: int,
n_head: int,
n_layer: int,
dtype = tf.float16,
):
self.zeropadding1d1 = ZeroPadding1D(padding=1)
self.conv1 = Conv1d(filters=n_state, kernel_size=3)
self.zeropadding1d2 = ZeroPadding1D(padding=1)
self.conv2 = Conv1d(filters=n_state, kernel_size=3, strides=2)
self._positional_embedding = tf.cast(sinusoids(n_ctx, n_state), dtype)
self.blocks = [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
self.ln_post = LayerNorm(n_state)
def __call__(self, x):
x = self.zeropadding1d1(x)
x = tf.cast(tf.nn.gelu(self.conv1(x)), x.dtype)
x = self.zeropadding1d2(x)
x = tf.cast(tf.nn.gelu(self.conv2(x)), x.dtype)
assert x.shape[1:] == self._positional_embedding.shape, "incorrect audio shape"
x = x + self._positional_embedding
for block in self.blocks:
x, _, _ = block(x)
x = self.ln_post(x)
return x
class TextDecoder(tf.keras.layers.Layer):
def __init__(
self,
n_vocab: int,
n_ctx: int,
n_state: int,
n_head: int,
n_layer: int,
dtype = tf.float16,
):
self.token_embedding = self.add_weight(
name='token_embedding',
shape=[self.n_vocab, self.n_state],
initializer=tf.keras.initializers.RandomNormal(stddev=0.02), # 设定标准差 stddev
trainable=True
)
self.positional_embedding = self.add_weight(
name='positional_embedding',
shape=[self.n_ctx, self.n_state],
initializer=tf.keras.initializers.Zeros(), # 初始化为全零
trainable=True
)
self.blocks = [
ResidualAttentionBlock(n_state, n_head, cross_attention=True)
for _ in range(n_layer)
]
self.ln = LayerNorm(n_state)
self._mask = tf.fill((n_ctx, n_ctx), float("-inf"))
self._mask = tf.linalg.band_part(self._mask, 0, -1)
self._mask = tf.linalg.set_diag(self._mask, tf.zeros(n_ctx))
self._mask = tf.cast(self._mask, dtype)
def __call__(self, x, xa, kv_cache=None):
"""
x : shape = (batch_size, <= n_ctx)
the text tokens
xa : shape = (batch_size, n_audio_ctx, n_audio_state)
the encoded audio features to be attended on
"""
offset = kv_cache[0][0][0].shape[1] if kv_cache else 0
x = (
tf.gather(self.token_embedding, x)
+ self.positional_embedding[offset : offset + x.shape[-1]]
)
if kv_cache is None:
kv_cache = [None] * len(self.blocks)
cross_qk = [None] * len(self.blocks)
for e, block in enumerate(self.blocks):
x, kv_cache[e], cross_qk[e] = block(
x, xa, mask=self._mask, kv_cache=kv_cache[e]
)
x = self.ln(x)
return tf.matmul(x, tf.transpose(self.token_embedding)), kv_cache, cross_qk
class Whisper(Model):
def __init__(self, dims: ModelDimensions, dtype = tf.float16):
super(Whisper, self).__init__()
self.dims = dims
self.encoder = AudioEncoder(
self.dims.n_mels,
self.dims.n_audio_ctx,
self.dims.n_audio_state,
self.dims.n_audio_head,
self.dims.n_audio_layer,
dtype,
)
self.decoder = TextDecoder(
self.dims.n_vocab,
self.dims.n_text_ctx,
self.dims.n_text_state,
self.dims.n_text_head,
self.dims.n_text_layer,
dtype,
)
# use the last half among the decoder layers for time alignment by default;
# to use a specific set of heads, see `set_alignment_heads()` below.
all_heads = np.zeros(
(self.dims.n_text_layer, self.dims.n_text_head), dtype=bool
)
all_heads[self.dims.n_text_layer // 2 :] = True
self.alignment_heads = tf.transpose(tf.cast(tf.where(all_heads != 0), dtype=tf.int32))
def set_alignment_heads(self, dump: Union[bytes, np.ndarray]):
if isinstance(dump, np.ndarray):
self.alignment_heads = tf.convert_to_tensor(dump)
elif isinstance(dump, bytes):
array = np.frombuffer(
gzip.decompress(base64.b85decode(dump)), dtype=bool
).copy()
mask = array.reshape(self.dims.n_text_layer, self.dims.n_text_head)
self.alignment_heads = tf.transpose(tf.cast(tf.where(mask != 0), dtype=tf.int32))
else:
raise ValueError(
f"Invalid type for `dump`: {type(dump)}. Expected a np.ndarray or base85-encoded bytes containing"
" alignment_head information"
)
def embed_audio(self, mel):
return self.encoder(mel)
def logits(self, tokens, audio_features):
return self.decoder(tokens, audio_features)[0]
def forward_with_cross_qk(self, mel, tokens):
logits, _, cross_qk = self.decoder(tokens, self.encoder(mel))
return logits, cross_qk
def __call__(self, mel, tokens):
return self.decoder(tokens, self.encoder(mel))[0]
@property
def is_multilingual(self):
return self.dims.n_vocab >= 51865
@property
def num_languages(self):
return self.dims.n_vocab - 51765 - int(self.is_multilingual) |