Update README.md
Browse files
README.md
CHANGED
@@ -16,16 +16,15 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
This model is a fine-tuned version of [nlpconnect/vit-gpt2-image-captioning](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
- eval_loss: 0.4650
|
19 |
-
- eval_rouge1:
|
20 |
-
- eval_rouge2:
|
21 |
- eval_rougeL: 36.5451
|
22 |
-
- eval_rougeLsum:
|
23 |
-
- eval_gen_len:
|
24 |
-
- eval_runtime: 407.0026
|
25 |
- eval_samples_per_second: 7.371
|
26 |
- eval_steps_per_second: 1.843
|
27 |
-
- epoch:
|
28 |
-
- step:
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -41,6 +40,7 @@ More information needed
|
|
41 |
|
42 |
## Training procedure
|
43 |
|
|
|
44 |
### Training hyperparameters
|
45 |
|
46 |
The following hyperparameters were used during training:
|
@@ -53,7 +53,24 @@ The following hyperparameters were used during training:
|
|
53 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
- lr_scheduler_type: linear
|
55 |
- num_epochs: 3.0
|
|
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
### Framework versions
|
58 |
|
59 |
- Transformers 4.39.3
|
|
|
16 |
This model is a fine-tuned version of [nlpconnect/vit-gpt2-image-captioning](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
- eval_loss: 0.4650
|
19 |
+
- eval_rouge1: 42.848
|
20 |
+
- eval_rouge2: 17.6905
|
21 |
- eval_rougeL: 36.5451
|
22 |
+
- eval_rougeLsum: 38.9854
|
23 |
+
- eval_gen_len: 12.025
|
|
|
24 |
- eval_samples_per_second: 7.371
|
25 |
- eval_steps_per_second: 1.843
|
26 |
+
- epoch: 1.4
|
27 |
+
- step: 7000
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
40 |
|
41 |
## Training procedure
|
42 |
|
43 |
+
|
44 |
### Training hyperparameters
|
45 |
|
46 |
The following hyperparameters were used during training:
|
|
|
53 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
- lr_scheduler_type: linear
|
55 |
- num_epochs: 3.0
|
56 |
+
### Training results
|
57 |
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
60 |
+
| 0.1497 | 0.1 | 500 | 0.5462 | 40.1774 | 14.6199 | 36.3335 | 36.3518 | 12.5965 |
|
61 |
+
| 0.1604 | 0.2 | 1000 | 0.5302 | 41.4714 | 16.0237 | 37.5992 | 37.5915 | 11.914 |
|
62 |
+
| 0.1631 | 0.3 | 1500 | 0.5436 | 40.3816 | 14.6958 | 36.6109 | 36.6027 | 12.3295 |
|
63 |
+
| 0.1634 | 0.4 | 2000 | 0.5266 | 40.9484 | 15.9068 | 37.5194 | 37.5088 | 12.033 |
|
64 |
+
| 0.1576 | 0.5 | 2500 | 0.5544 | 40.373 | 15.012 | 36.5218 | 36.5141 | 12.3345 |
|
65 |
+
| 0.1599 | 0.6 | 3000 | 0.5425 | 40.7552 | 15.2754 | 37.1059 | 37.1299 | 12.191 |
|
66 |
+
| 0.291 | 0.7 | 3500 | 0.4545 | 41.5934 | 16.251 | 37.7291 | 37.7113 | 12.0295 |
|
67 |
+
| 0.2825 | 0.8 | 4000 | 0.4558 | 42.6728 | 17.1703 | 38.8692 | 38.8841 | 12.246 |
|
68 |
+
| 0.2737 | 0.9 | 4500 | 0.4565 | 43.0036 | 16.8421 | 39.1761 | 39.1693 | 11.7975 |
|
69 |
+
| 0.2683 | 1.0 | 5000 | 0.4576 | 42.1341 | 16.7973 | 38.2881 | 38.3083 | 11.8655 |
|
70 |
+
| 0.1687 | 1.1 | 5500 | 0.4996 | 41.7152 | 16.4042 | 37.7724 | 37.7629 | 12.384 |
|
71 |
+
| 0.168 | 1.2 | 6000 | 0.5046 | 41.6521 | 16.6159 | 37.7915 | 37.7778 | 12.661 |
|
72 |
+
| 0.1688 | 1.3 | 6500 | 0.5020 | 42.3292 | 17.1408 | 38.5407 | 38.5282 | 11.846 |
|
73 |
+
| 0.1682 | 1.4 | 7000 | 0.5045 | 42.848 | 17.6905 | 38.9854 | 38.9896 | 12.025 |
|
74 |
### Framework versions
|
75 |
|
76 |
- Transformers 4.39.3
|