Commit
·
f28ef3f
1
Parent(s):
a8f28d8
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: Output_LayoutLMv3_v8
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# Output_LayoutLMv3_v8
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-large](https://huggingface.co/microsoft/layoutlmv3-large) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.3054
|
23 |
+
- Precision: 0.8505
|
24 |
+
- Recall: 0.8273
|
25 |
+
- F1: 0.8387
|
26 |
+
- Accuracy: 0.9723
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 1e-06
|
46 |
+
- train_batch_size: 3
|
47 |
+
- eval_batch_size: 3
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- training_steps: 3000
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 2.38 | 100 | 0.2910 | 0.7636 | 0.7636 | 0.7636 | 0.9637 |
|
58 |
+
| No log | 4.76 | 200 | 0.2822 | 0.8318 | 0.8091 | 0.8203 | 0.9706 |
|
59 |
+
| No log | 7.14 | 300 | 0.2942 | 0.8148 | 0.8 | 0.8073 | 0.9689 |
|
60 |
+
| No log | 9.52 | 400 | 0.2821 | 0.7909 | 0.7909 | 0.7909 | 0.9671 |
|
61 |
+
| 0.0005 | 11.9 | 500 | 0.2896 | 0.7909 | 0.7909 | 0.7909 | 0.9671 |
|
62 |
+
| 0.0005 | 14.29 | 600 | 0.2914 | 0.8241 | 0.8091 | 0.8165 | 0.9706 |
|
63 |
+
| 0.0005 | 16.67 | 700 | 0.2912 | 0.8095 | 0.7727 | 0.7907 | 0.9689 |
|
64 |
+
| 0.0005 | 19.05 | 800 | 0.2578 | 0.8241 | 0.8091 | 0.8165 | 0.9706 |
|
65 |
+
| 0.0005 | 21.43 | 900 | 0.2830 | 0.8241 | 0.8091 | 0.8165 | 0.9706 |
|
66 |
+
| 0.0005 | 23.81 | 1000 | 0.2878 | 0.8411 | 0.8182 | 0.8295 | 0.9723 |
|
67 |
+
| 0.0005 | 26.19 | 1100 | 0.3151 | 0.8113 | 0.7818 | 0.7963 | 0.9689 |
|
68 |
+
| 0.0005 | 28.57 | 1200 | 0.3142 | 0.7706 | 0.7636 | 0.7671 | 0.9637 |
|
69 |
+
| 0.0005 | 30.95 | 1300 | 0.2972 | 0.8273 | 0.8273 | 0.8273 | 0.9723 |
|
70 |
+
| 0.0005 | 33.33 | 1400 | 0.2866 | 0.8148 | 0.8 | 0.8073 | 0.9706 |
|
71 |
+
| 0.0004 | 35.71 | 1500 | 0.2737 | 0.8288 | 0.8364 | 0.8326 | 0.9723 |
|
72 |
+
| 0.0004 | 38.1 | 1600 | 0.2653 | 0.8532 | 0.8455 | 0.8493 | 0.9740 |
|
73 |
+
| 0.0004 | 40.48 | 1700 | 0.2740 | 0.8108 | 0.8182 | 0.8145 | 0.9706 |
|
74 |
+
| 0.0004 | 42.86 | 1800 | 0.2861 | 0.8198 | 0.8273 | 0.8235 | 0.9706 |
|
75 |
+
| 0.0004 | 45.24 | 1900 | 0.2904 | 0.7788 | 0.8 | 0.7892 | 0.9671 |
|
76 |
+
| 0.0004 | 47.62 | 2000 | 0.2899 | 0.7788 | 0.8 | 0.7892 | 0.9671 |
|
77 |
+
| 0.0004 | 50.0 | 2100 | 0.2957 | 0.8108 | 0.8182 | 0.8145 | 0.9689 |
|
78 |
+
| 0.0004 | 52.38 | 2200 | 0.2962 | 0.8505 | 0.8273 | 0.8387 | 0.9723 |
|
79 |
+
| 0.0004 | 54.76 | 2300 | 0.2962 | 0.8505 | 0.8273 | 0.8387 | 0.9723 |
|
80 |
+
| 0.0004 | 57.14 | 2400 | 0.3057 | 0.8505 | 0.8273 | 0.8387 | 0.9723 |
|
81 |
+
| 0.0002 | 59.52 | 2500 | 0.3070 | 0.8505 | 0.8273 | 0.8387 | 0.9723 |
|
82 |
+
| 0.0002 | 61.9 | 2600 | 0.3050 | 0.8505 | 0.8273 | 0.8387 | 0.9723 |
|
83 |
+
| 0.0002 | 64.29 | 2700 | 0.3050 | 0.8505 | 0.8273 | 0.8387 | 0.9723 |
|
84 |
+
| 0.0002 | 66.67 | 2800 | 0.3052 | 0.8505 | 0.8273 | 0.8387 | 0.9723 |
|
85 |
+
| 0.0002 | 69.05 | 2900 | 0.3052 | 0.8505 | 0.8273 | 0.8387 | 0.9723 |
|
86 |
+
| 0.0 | 71.43 | 3000 | 0.3054 | 0.8505 | 0.8273 | 0.8387 | 0.9723 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.29.2
|
92 |
+
- Pytorch 2.2.1+cu121
|
93 |
+
- Datasets 2.18.0
|
94 |
+
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1424196198
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b016ede4599b60584df6b76be84f5bd7409b21f9c26eb0493550e10bac197e81
|
3 |
size 1424196198
|
runs/Apr08_14-31-51_ip-10-192-12-213/events.out.tfevents.1712586740.ip-10-192-12-213.23658.4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50905b1b8168bd29484da1213b0651d52b57b93eacc4c594b943aa98180c4562
|
3 |
+
size 20155
|