teknium commited on
Commit
eaeeb79
·
verified ·
1 Parent(s): b7c6a9b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +334 -0
README.md ADDED
@@ -0,0 +1,334 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: NousResearch/Hermes-2-Pro-Llama-3-8B
3
+ tags:
4
+ - Llama-3
5
+ - instruct
6
+ - finetune
7
+ - chatml
8
+ - DPO
9
+ - RLHF
10
+ - gpt4
11
+ - synthetic data
12
+ - distillation
13
+ - function calling
14
+ - json mode
15
+ - axolotl
16
+ - merges
17
+ model-index:
18
+ - name: Hermes-2-Pro-Llama-3-Instruct-8B-Merge
19
+ results: []
20
+ language:
21
+ - en
22
+ datasets:
23
+ - teknium/OpenHermes-2.5
24
+ widget:
25
+ - example_title: Hermes 2 Pro Llama-3 Instruct Merge
26
+ messages:
27
+ - role: system
28
+ content: >-
29
+ You are a sentient, superintelligent artificial general intelligence, here
30
+ to teach and assist me.
31
+ - role: user
32
+ content: >-
33
+ Write a short story about Goku discovering kirby has teamed up with Majin
34
+ Buu to destroy the world.
35
+ ---
36
+ # - Hermes-2 Θ Llama-3 8B
37
+
38
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/HQnQmNM1L3KXGhp0wUzHH.png)
39
+
40
+ ## Model Description
41
+
42
+ **This is the GGUF version of the Hermes 2 Θ Model. For the FP16 model, [Click Here](https://huggingface.co/NousResearch/Instruct-Hermes-2-Pro-Llama-3-8B)
43
+
44
+ Hermes-2 Θ (Theta) is the first experimental merged model released by [Nous Research](https://nousresearch.com/), in collaboration with Charles Goddard at [Arcee](https://www.arcee.ai/), the team behind MergeKit.
45
+
46
+ Hermes-2 Θ is a merged and then further RLHF'ed version our excellent Hermes 2 Pro model and Meta's Llama-3 Instruct model to form a new model, Hermes-2 Θ, combining the best of both worlds of each model.
47
+
48
+ ## Example Outputs
49
+
50
+ ### Create New Mythos:
51
+
52
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/dvKhnSvHdx4nTQIqB9Lpv.png)
53
+
54
+ ### Chat with a Meta-Cognitive Entity
55
+
56
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/GwdCqowE6GQylineqehhx.png)
57
+
58
+ ### Ask for a structured JSON output:
59
+
60
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/us72aL9gwUXdqSHetRVRV.png)
61
+
62
+
63
+ # Prompt Format
64
+
65
+ Hermes 2 Θ uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue.
66
+
67
+ System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.
68
+
69
+ This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns.
70
+
71
+ This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI.
72
+
73
+ Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
74
+ ```
75
+ <|im_start|>system
76
+ You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|>
77
+ <|im_start|>user
78
+ Hello, who are you?<|im_end|>
79
+ <|im_start|>assistant
80
+ Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|>
81
+ ```
82
+
83
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
84
+ `tokenizer.apply_chat_template()` method:
85
+
86
+ ```python
87
+ messages = [
88
+ {"role": "system", "content": "You are Hermes 2."},
89
+ {"role": "user", "content": "Hello, who are you?"}
90
+ ]
91
+ gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
92
+ model.generate(**gen_input)
93
+ ```
94
+
95
+ When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
96
+ that the model continues with an assistant response.
97
+
98
+ To utilize the prompt format without a system prompt, simply leave the line out.
99
+
100
+ ## Prompt Format for Function Calling
101
+
102
+ Our model was trained on specific system prompts and structures for Function Calling. While the system prompt looks complicated, we have created a GitHub repo containing code to easily build these based on real python functions.
103
+
104
+ You should use the system role with this message, followed by a function signature json as this example shows here.
105
+ ```
106
+ <|im_start|>system
107
+ You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
108
+ <tool_call>
109
+ {"arguments": <args-dict>, "name": <function-name>}
110
+ </tool_call><|im_end|>
111
+ ```
112
+
113
+ To complete the function call, create a user prompt that follows the above system prompt, like so:
114
+ ```
115
+ <|im_start|>user
116
+ Fetch the stock fundamentals data for Tesla (TSLA)<|im_end|>
117
+ ```
118
+
119
+ The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):
120
+ ```
121
+ <|im_start|>assistant
122
+ <tool_call>
123
+ {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"}
124
+ </tool_call><|im_end|>
125
+ ```
126
+
127
+ Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so:
128
+ ```
129
+ <|im_start|>tool
130
+ <tool_response>
131
+ {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}}
132
+ </tool_response>
133
+ <|im_end|>
134
+ ```
135
+
136
+ The assistant will then read in that data from the function's response, and generate a natural language response:
137
+ ```
138
+ <|im_start|>assistant
139
+ The stock fundamentals data for Tesla (TSLA) are as follows:
140
+ - **Symbol**: TSLA
141
+ - **Company Name**: Tesla, Inc.
142
+ - **Sector**: Consumer Cyclical
143
+ - **Industry**: Auto Manufacturers
144
+ - **Market Capitalization**: $566,160,130,480
145
+ - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73
146
+ - **Price-to-Book Ratio (PB Ratio)**: 9.04
147
+ - **Dividend Yield**: N/A
148
+ - **Trailing Earnings Per Share (EPS)**: $4.3
149
+ - **Beta Value of the Stock**: 2.42
150
+ - **52-Week High Price of the Stock**: $299.29
151
+ - **52-Week Low Price of the Stock**: $152.37
152
+
153
+ This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|>
154
+ ```
155
+
156
+ ## Prompt Format for JSON Mode / Structured Outputs
157
+
158
+ Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema.
159
+
160
+ Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main
161
+
162
+ ```
163
+ <|im_start|>system
164
+ You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|>
165
+ ```
166
+
167
+ Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.
168
+
169
+
170
+ # Benchmarks
171
+
172
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/suBbCUIxpcRvhCv6-DBDQ.png)
173
+
174
+ ## GPT4All:
175
+ ```
176
+
177
+ |    Task     |Version| Metric |Value |   |Stderr|
178
+
179
+ |-------------|------:|--------|-----:|---|-----:|
180
+
181
+ |arc_challenge|      0|acc     |0.5529|±  |0.0145|
182
+
183
+ |             |       |acc_norm|0.5870|±  |0.0144|
184
+
185
+ |arc_easy     |      0|acc     |0.8371|±  |0.0076|
186
+
187
+ |             |       |acc_norm|0.8144|±  |0.0080|
188
+
189
+ |boolq        |      1|acc     |0.8599|±  |0.0061|
190
+
191
+ |hellaswag    |      0|acc     |0.6133|±  |0.0049|
192
+
193
+ |             |       |acc_norm|0.7989|±  |0.0040|
194
+
195
+ |openbookqa   |      0|acc     |0.3940|±  |0.0219|
196
+
197
+ |             |       |acc_norm|0.4680|±  |0.0223|
198
+
199
+ |piqa         |      0|acc     |0.8063|±  |0.0092|
200
+
201
+ |             |       |acc_norm|0.8156|±  |0.0090|
202
+
203
+ |winogrande   |      0|acc     |0.7372|±  |0.0124|
204
+
205
+ ```
206
+
207
+ Average: 72.59
208
+
209
+ ## AGIEval:
210
+ ```
211
+ |             Task             |Version| Metric |Value |   |Stderr|
212
+ |------------------------------|------:|--------|-----:|---|-----:|
213
+ |agieval_aqua_rat              |      0|acc     |0.2441|±  |0.0270|
214
+ |                              |       |acc_norm|0.2441|±  |0.0270|
215
+ |agieval_logiqa_en             |      0|acc     |0.3687|±  |0.0189|
216
+ |                              |       |acc_norm|0.3840|±  |0.0191|
217
+ |agieval_lsat_ar               |      0|acc     |0.2304|±  |0.0278|
218
+ |                              |       |acc_norm|0.2174|±  |0.0273|
219
+ |agieval_lsat_lr               |      0|acc     |0.5471|±  |0.0221|
220
+ |                              |       |acc_norm|0.5373|±  |0.0221|
221
+ |agieval_lsat_rc               |      0|acc     |0.6617|±  |0.0289|
222
+ |                              |       |acc_norm|0.6357|±  |0.0294|
223
+ |agieval_sat_en                |      0|acc     |0.7670|±  |0.0295|
224
+ |                              |       |acc_norm|0.7379|±  |0.0307|
225
+ |agieval_sat_en_without_passage|      0|acc     |0.4417|±  |0.0347|
226
+ |                              |       |acc_norm|0.4223|±  |0.0345|
227
+ |agieval_sat_math              |      0|acc     |0.4000|±  |0.0331|
228
+ |                              |       |acc_norm|0.3455|±  |0.0321|
229
+ ```
230
+
231
+ Average: 44.05
232
+
233
+ ## BigBench:
234
+
235
+ ```
236
+
237
+ |                      Task                      |Version|       Metric        |Value |   |Stderr|
238
+ |------------------------------------------------|------:|---------------------|-----:|---|-----:|
239
+ |bigbench_causal_judgement                       |      0|multiple_choice_grade|0.6000|±  |0.0356|
240
+ |bigbench_date_understanding                     |      0|multiple_choice_grade|0.6585|±  |0.0247|
241
+ |bigbench_disambiguation_qa                      |      0|multiple_choice_grade|0.3178|±  |0.0290|
242
+ |bigbench_geometric_shapes                       |      0|multiple_choice_grade|0.2340|±  |0.0224|
243
+ |                                                |       |exact_str_match      |0.0000|±  |0.0000|
244
+ |bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|0.2980|±  |0.0205|
245
+ |bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|0.2057|±  |0.0153|
246
+ |bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|0.5367|±  |0.0288|
247
+ |bigbench_movie_recommendation                   |      0|multiple_choice_grade|0.4040|±  |0.0220|
248
+ |bigbench_navigate                               |      0|multiple_choice_grade|0.4970|±  |0.0158|
249
+ |bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|0.7075|±  |0.0102|
250
+ |bigbench_ruin_names                             |      0|multiple_choice_grade|0.4821|±  |0.0236|
251
+ |bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|0.2295|±  |0.0133|
252
+ |bigbench_snarks                                 |      0|multiple_choice_grade|0.6906|±  |0.0345|
253
+ |bigbench_sports_understanding                   |      0|multiple_choice_grade|0.5375|±  |0.0159|
254
+ |bigbench_temporal_sequences                     |      0|multiple_choice_grade|0.6270|±  |0.0153|
255
+ |bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|0.2216|±  |0.0118|
256
+ |bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|0.1594|±  |0.0088|
257
+ |bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|0.5367|±  |0.0288|
258
+ ```
259
+
260
+ Average: 44.13
261
+
262
+ **IFEval**: 72.64
263
+
264
+ **MT_Bench**: Turn 1 - 8.3875, Turn 2 - 8.00625, Average - 8.196875
265
+
266
+ # Inference Code
267
+
268
+ Here is example code using HuggingFace Transformers to inference the model (note: in 4bit, it will require around 5GB of VRAM)
269
+
270
+ Note: To use function calling, you should see the github repo above.
271
+
272
+ ```python
273
+ # Code to inference Hermes with HF Transformers
274
+ # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages
275
+
276
+ import torch
277
+ from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
278
+ import bitsandbytes, flash_attn
279
+
280
+ tokenizer = AutoTokenizer.from_pretrained('NousResearch/Hermes-2-Theta-Llama-3-8B', trust_remote_code=True)
281
+ model = LlamaForCausalLM.from_pretrained(
282
+ "NousResearch/Hermes-2-Theta-Llama-3-8B",
283
+ torch_dtype=torch.float16,
284
+ device_map="auto",
285
+ load_in_8bit=False,
286
+ load_in_4bit=True,
287
+ use_flash_attention_2=True
288
+ )
289
+
290
+ prompts = [
291
+ """<|im_start|>system
292
+ You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
293
+ <|im_start|>user
294
+ Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
295
+ <|im_start|>assistant""",
296
+ ]
297
+
298
+ for chat in prompts:
299
+ print(chat)
300
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
301
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
302
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
303
+ print(f"Response: {response}")
304
+ ```
305
+
306
+
307
+ ## Inference Code for Function Calling:
308
+
309
+ All code for utilizing, parsing, and building function calling templates is available on our github:
310
+ [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling)
311
+
312
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png)
313
+
314
+ # Chat Interfaces
315
+
316
+ When quantized versions of the model are released, I recommend using LM Studio for chatting with Hermes 2 Pro. It does not support function calling - for that use our github repo. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box.
317
+ In LM-Studio, simply select the ChatML Prefix on the settings side pane:
318
+
319
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png)
320
+
321
+
322
+ ## Quantized Versions:
323
+
324
+ GGUF Versions Available Here: https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B-GGUF
325
+
326
+ # How to cite:
327
+
328
+ ```bibtext
329
+ @misc{Hermes-2-Theta-Llama-3-8B,
330
+ url={[https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B][NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B))},
331
+ title={Hermes-2-Theta-Llama-3-8B},
332
+ author={"Teknium", Charles Goddard, "interstellarninja", "theemozilla", "karan4d", "huemin_art"}
333
+ }
334
+ ```