Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: larryvrh/Yi-34B-200K-Llamafied
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: capybara-v4-yi-34b-200k
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
15 |
+
# capybara-v4-yi-34b-200k
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [larryvrh/Yi-34B-200K-Llamafied](https://huggingface.co/larryvrh/Yi-34B-200K-Llamafied) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3638
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0005
|
39 |
+
- train_batch_size: 1
|
40 |
+
- eval_batch_size: 1
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- num_devices: 8
|
44 |
+
- gradient_accumulation_steps: 8
|
45 |
+
- total_train_batch_size: 64
|
46 |
+
- total_eval_batch_size: 8
|
47 |
+
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_steps: 50
|
50 |
+
- num_epochs: 3
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
56 |
+
| 0.7201 | 0.31 | 200 | 0.7801 |
|
57 |
+
| 0.716 | 0.62 | 400 | 0.7240 |
|
58 |
+
| 0.6128 | 0.93 | 600 | 0.6696 |
|
59 |
+
| 0.4111 | 1.24 | 800 | 0.6016 |
|
60 |
+
| 0.415 | 1.55 | 1000 | 0.5395 |
|
61 |
+
| 0.3293 | 1.86 | 1200 | 0.4782 |
|
62 |
+
| 0.3271 | 2.17 | 1400 | 0.4272 |
|
63 |
+
| 0.2672 | 2.49 | 1600 | 0.3925 |
|
64 |
+
| 0.2129 | 2.8 | 1800 | 0.3638 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.34.1
|
70 |
+
- Pytorch 2.0.1
|
71 |
+
- Datasets 2.14.6
|
72 |
+
- Tokenizers 0.14.1
|