emozilla commited on
Commit
5a593d7
1 Parent(s): 79464ab

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: larryvrh/Yi-34B-200K-Llamafied
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: capybara-v4-yi-34b-200k
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ # capybara-v4-yi-34b-200k
16
+
17
+ This model is a fine-tuned version of [larryvrh/Yi-34B-200K-Llamafied](https://huggingface.co/larryvrh/Yi-34B-200K-Llamafied) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3638
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0005
39
+ - train_batch_size: 1
40
+ - eval_batch_size: 1
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 8
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 64
46
+ - total_eval_batch_size: 8
47
+ - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_steps: 50
50
+ - num_epochs: 3
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss |
55
+ |:-------------:|:-----:|:----:|:---------------:|
56
+ | 0.7201 | 0.31 | 200 | 0.7801 |
57
+ | 0.716 | 0.62 | 400 | 0.7240 |
58
+ | 0.6128 | 0.93 | 600 | 0.6696 |
59
+ | 0.4111 | 1.24 | 800 | 0.6016 |
60
+ | 0.415 | 1.55 | 1000 | 0.5395 |
61
+ | 0.3293 | 1.86 | 1200 | 0.4782 |
62
+ | 0.3271 | 2.17 | 1400 | 0.4272 |
63
+ | 0.2672 | 2.49 | 1600 | 0.3925 |
64
+ | 0.2129 | 2.8 | 1800 | 0.3638 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.34.1
70
+ - Pytorch 2.0.1
71
+ - Datasets 2.14.6
72
+ - Tokenizers 0.14.1