--- license: mit language: - en datasets: - nampdn-ai/tiny-textbooks --- # Nuclues 1B Alpha1
## What is Nucleus? Nucleus is a small language model based on Mistral (actually, the trimmed untrained version you can find [here](https://huggingface.co/lmlab/lmlab-mistral-1b-untrained)) and trained in different steps. First, we've pretrained it on TinyStories dataset, then [TinyTextBooks](https://huggingface.co/datasets/nampdn-ai/tiny-textbooks) to make it a more specific model. This model is just a _proof of concept_ at this point, but showed good promises in early tests. So with proper training, can be a good product over time! ## Inference [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/prp-e/nucleus/blob/main/nucleus_1b_inference.ipynb) First you need to install `transformers` and `accelerate` libraries in order to run this model. Then, you basically have to run the following code: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig import torch model_name_or_id = "NucleusOrg/Nucleus-1B-alpha-1" model = AutoModelForCausalLM.from_pretrained(model_name_or_id, torch_dtype=torch.float16, device_map="cuda") tokenizer = AutoTokenizer.from_pretrained(model_name_or_id) prompt = "### Lesson: Python Programming 101\n### Introduction\n" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") generation_config = GenerationConfig( do_sample=True, top_k=1, temperature=0.9, max_new_tokens=500, repetition_penalty=1.5, pad_token_id=tokenizer.eos_token_id ) outputs = model.generate(**inputs, generation_config=generation_config) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` __Prompt Format__: This model does not have a specific prompt format, but the best results could be achieved with a _textbook_ type of format like: ``` ### Chapter 1: Elon Musk and Iron Man Elon met Tony at a Cafe in Monaco, then they had a conversation about ``` You also can try something like this: ``` Question: Who are you? Answer: ``` But since the model isn't made for chat/question answering, the result won't be good enough. __Repetition Penalty__: Since most of these models like to repeat themselves, just keep that number there. You can increase or decrease it based on your liking,but keep in mind that a number lower than 1 makes the model _super repetitive_. ## Known Issues * Since we only had 420k rows of data, a lot of information are missing on this model. Since mentioned earlier in this very model card, it's a _proof of concept_ model. * You probably may test it with coding. Let's say that the model is terrible at coding. We may release a coding optimized model as soon as possible. ## Our Team * Muhammadreza Haghiri ([[X (formerly Twitter)](https://twitter.com/haghiri_ai) - Website](https://haghiri75.com/en) - [Github](https://github.com/prp-e) - [LinkedIn](https://www.linkedin.com/in/muhammadreza-haghiri-1761325b)) * Mahi Mohrechi ([Website](https://mohrechi-portfolio.vercel.app/) - [Github](https://github.com/f-mohrechi) - [LinkedIn](https://www.linkedin.com/in/faeze-mohrechi/)) ## Special Thanks * LMLabs for providing 1B untrained model. * Mistral Team for providing the best open source base model ever. * _Sina Rashidi_, who translated Alpaca dataset to Persian. * [Jupyto](https://jupyto.com) team for providing our infrastructure.