First PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 263.93 +/- 17.73
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f988e7c5b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f988e7c5c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f988e7c5cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f988e7c5d40>", "_build": "<function ActorCriticPolicy._build at 0x7f988e7c5dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f988e7c5e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f988e7c5ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f988e7c5f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f988e74a050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f988e74a0e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f988e74a170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f988e78dcc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653508917.8631635, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAs1KFvUDjqz/iUBu/MFHYvokkwrv/qj++AAAAAAAAAABNFeY9ZDLRPYKzCr53cla+GYCNu/NBVz0AAAAAAAAAAA12hT0fbfO7gjtJvNXpiDxENlM9xdhlvQAAgD8AAIA/AIF3vUjBlbpugaq6L537uMmmMDvCPcw5AACAPwAAgD/AuLk9Uvi3uYiNzTpm+Ks0EAwVuwhw77kAAAAAAACAP41kub17fpq6ouBKOwy6SzhCoRG5xfX0uQAAAAAAAIA/Njh8vqj47j4JK4I+b+i0vjA3G77CShY+AAAAAAAAAADzpya+sZIIP5SJS70daau+t7D6vbro+7wAAAAAAAAAANpwEr6ck5w/qM0rv+pRDb+shOG9ye+NvgAAAAAAAAAAzXO2PRSQtro6i0M6xA5ENenG0TjtBF+5AAAAAAAAgD9ajbk9jwZbung34Dp1BpM1xN0Cur2hA7oAAAAAAACAP1PwKj4p6Aq8Q7xkOJF1IraxLXK9fBuMtwAAgD8AAIA/zWayvETEVT8je+W8V6vivpm5hb07NCK9AAAAAAAAAABmwum9XEJMPiNUbT5Sg36+ussdPbXGTD0AAAAAAAAAAFaFdb5JNYM+E2ypPhWDWb79ISc9ixPDPAAAAAAAAAAAzeIgPCkUALoFiFI8LtCePDUFdDsK9Ym9AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8guvJPmBcUCUhpRSlIwBbJRNOgGMAXSUR0CQZfizLOiWdX2UKGgGaAloD0MIIzDWNzCkb0CUhpRSlGgVTQEBaBZHQJBl7/rB0p51fZQoaAZoCWgPQwjS+8bXXgJxQJSGlFKUaBVNCANoFkdAkGgROP/7znV9lChoBmgJaA9DCCh8tg4O+nBAlIaUUpRoFU1EAWgWR0CQaO/dqL0jdX2UKGgGaAloD0MI+Z6RCA3ncUCUhpRSlGgVTUMDaBZHQJBp5SydFv11fZQoaAZoCWgPQwjPMLWlDvRBQJSGlFKUaBVL22gWR0CQa1gpBomHdX2UKGgGaAloD0MIbeUl/9O2cECUhpRSlGgVTbwBaBZHQJBroMAmzB11fZQoaAZoCWgPQwiQ+YBA5yFyQJSGlFKUaBVNzAFoFkdAkIBE/bCaZ3V9lChoBmgJaA9DCGhYjLoWBnBAlIaUUpRoFU20AWgWR0CQgTJ+2E00dX2UKGgGaAloD0MIe2gfK7gkcECUhpRSlGgVTaoBaBZHQJCBYy0rsjV1fZQoaAZoCWgPQwjCiH0CqENvQJSGlFKUaBVNFwFoFkdAkIIblvIfbXV9lChoBmgJaA9DCGgJMgIqzGxAlIaUUpRoFU0yAWgWR0CQgm5H3DekdX2UKGgGaAloD0MImngHeBIlcUCUhpRSlGgVTV8BaBZHQJCCsxyn1nN1fZQoaAZoCWgPQwgTSfQyimZwQJSGlFKUaBVNLAFoFkdAkILJXdTHbXV9lChoBmgJaA9DCA7ZQLrYXHBAlIaUUpRoFU0WA2gWR0CQgvarmyPddX2UKGgGaAloD0MIHhoWo66gbkCUhpRSlGgVTWABaBZHQJCDvK/20zF1fZQoaAZoCWgPQwjF506w/6o/QJSGlFKUaBVLy2gWR0CQhNvAoG6gdX2UKGgGaAloD0MINrBVgsURckCUhpRSlGgVTfgBaBZHQJCGdlg+hXd1fZQoaAZoCWgPQwh2ilWDcJByQJSGlFKUaBVNzgFoFkdAkId7HuJDV3V9lChoBmgJaA9DCKkxIeYSAnJAlIaUUpRoFU10AWgWR0CQiBphWo3rdX2UKGgGaAloD0MI8Il1qjw0cECUhpRSlGgVTRQBaBZHQJCJiPaL4vh1fZQoaAZoCWgPQwi3J0hsNy1xQJSGlFKUaBVNgwFoFkdAkIm7dN34bnV9lChoBmgJaA9DCGFrtvKSsXBAlIaUUpRoFU1iAWgWR0CQil5UcXFcdX2UKGgGaAloD0MI6xotB/pUbkCUhpRSlGgVTR4BaBZHQJCMFvKlpGp1fZQoaAZoCWgPQwjaWfROheRxQJSGlFKUaBVNPwFoFkdAkI3VdonKGXV9lChoBmgJaA9DCE8g7BQr/25AlIaUUpRoFU1+AWgWR0CQjrXpnpSrdX2UKGgGaAloD0MIuVLPglBMbUCUhpRSlGgVTR8BaBZHQJCPT/Lkjop1fZQoaAZoCWgPQwhLICV2LXVwQJSGlFKUaBVNTwFoFkdAkI+zujRD1HV9lChoBmgJaA9DCBh47j2chHFAlIaUUpRoFU1lAmgWR0CQkE5Fw1iwdX2UKGgGaAloD0MITOFBs6t5cECUhpRSlGgVTYgBaBZHQJCQemrKeTV1fZQoaAZoCWgPQwg8vr1r0C5wQJSGlFKUaBVNnAFoFkdAkJCRgqmTDHV9lChoBmgJaA9DCFT9SufDsm1AlIaUUpRoFU06AWgWR0CQkcdxyXD4dX2UKGgGaAloD0MILJ56pAGZcUCUhpRSlGgVTTIBaBZHQJCUg24uscR1fZQoaAZoCWgPQwhy+nq+ZnBuQJSGlFKUaBVNbwFoFkdAkJSn4sVclnV9lChoBmgJaA9DCOzctBlnUXFAlIaUUpRoFU1LAWgWR0CQlZku6ErYdX2UKGgGaAloD0MITdu/spIjcECUhpRSlGgVTR8BaBZHQJCWRjurp7l1fZQoaAZoCWgPQwg+WpwxjFNwQJSGlFKUaBVNHgFoFkdAkJfVM/QjU3V9lChoBmgJaA9DCL4xBADH2m9AlIaUUpRoFU2TAmgWR0CQmCSQ5myxdX2UKGgGaAloD0MI1QW8zDC/b0CUhpRSlGgVTSMBaBZHQJCarQdCE6F1fZQoaAZoCWgPQwg5QgbyrJZwQJSGlFKUaBVNRQFoFkdAkJr8zdk8R3V9lChoBmgJaA9DCDEHQUdranFAlIaUUpRoFU0jAWgWR0CQmwh9LHuJdX2UKGgGaAloD0MIXrneNlOab0CUhpRSlGgVTQYBaBZHQJCbepMpPRB1fZQoaAZoCWgPQwgracU31MpxQJSGlFKUaBVNFQJoFkdAkJunIIWxhXV9lChoBmgJaA9DCHke3J01P29AlIaUUpRoFU1pAWgWR0CQm71WbPQfdX2UKGgGaAloD0MInuqQmyEscUCUhpRSlGgVTRECaBZHQJCdgqoZQ551fZQoaAZoCWgPQwjcKR2s/wpuQJSGlFKUaBVNGgFoFkdAkJ6nHim2s3V9lChoBmgJaA9DCFUTRN1HP3JAlIaUUpRoFU0kAWgWR0CQnxcc2itadX2UKGgGaAloD0MIYK5FC9BdckCUhpRSlGgVTSwDaBZHQJCfbI0ZWJd1fZQoaAZoCWgPQwiSk4lbBRkvQJSGlFKUaBVLm2gWR0CQn/vKEFnqdX2UKGgGaAloD0MIRu1+FaBMckCUhpRSlGgVTcUBaBZHQJCgIh9srNJ1fZQoaAZoCWgPQwhv1uB91Y5xQJSGlFKUaBVN5wFoFkdAkKBx9G7SRnV9lChoBmgJaA9DCIbmOo30e3BAlIaUUpRoFU0+AWgWR0CQoSOoYNy6dX2UKGgGaAloD0MIy0i9pzJwcECUhpRSlGgVTQgBaBZHQJC2hj+aScN1fZQoaAZoCWgPQwiPVN/5Bc9xQJSGlFKUaBVNJQFoFkdAkLarPhQ3xXV9lChoBmgJaA9DCN/dyhLd5nFAlIaUUpRoFU2AAWgWR0CQt1sJY1YRdX2UKGgGaAloD0MIWrkXmBVK9r+UhpRSlGgVS7ZoFkdAkLdk52hZhnV9lChoBmgJaA9DCAlupGyRGm9AlIaUUpRoFU2OAWgWR0CQuBtoi9qUdX2UKGgGaAloD0MIy/Pg7qz/cECUhpRSlGgVTXsBaBZHQJC5xeTmnwZ1fZQoaAZoCWgPQwgyryMO2bVwQJSGlFKUaBVNbwFoFkdAkLoCF9KEnXV9lChoBmgJaA9DCExxVdn3IHFAlIaUUpRoFU0zAWgWR0CQu/Haews5dX2UKGgGaAloD0MICHJQwkzKcECUhpRSlGgVTcMBaBZHQJC8rWUbDMx1fZQoaAZoCWgPQwipwp/hjYNxQJSGlFKUaBVNbgFoFkdAkL0lme18cHV9lChoBmgJaA9DCN6NBYWBoHBAlIaUUpRoFU1ZAWgWR0CQvgOo5xR3dX2UKGgGaAloD0MIb51/uyxtcECUhpRSlGgVTVgBaBZHQJC/KfDk2gp1fZQoaAZoCWgPQwhhcM0d/YNJQJSGlFKUaBVL4mgWR0CQv5IRh+fAdX2UKGgGaAloD0MIIZT3cTTDRUCUhpRSlGgVS8xoFkdAkMBzMibDuXV9lChoBmgJaA9DCJynOuTm8XFAlIaUUpRoFU0tAWgWR0CQwGvv0AcUdX2UKGgGaAloD0MI+kUJ+kticECUhpRSlGgVTacBaBZHQJDAxzS1E3N1fZQoaAZoCWgPQwgJNxlVhqRxQJSGlFKUaBVNPAFoFkdAkMD+UY8+zXV9lChoBmgJaA9DCBCU2/Z9l3FAlIaUUpRoFU0qAWgWR0CQwRDnNgSfdX2UKGgGaAloD0MIelbSiq/gcECUhpRSlGgVTT8BaBZHQJDBmBDohZB1fZQoaAZoCWgPQwiun/6z5kNyQJSGlFKUaBVN4AFoFkdAkMHNtdiUgXV9lChoBmgJaA9DCLucEhBTKnFAlIaUUpRoFU0MAWgWR0CQwj/lyR0VdX2UKGgGaAloD0MIjKAxk+i/cUCUhpRSlGgVS/VoFkdAkMOXYg7o0XV9lChoBmgJaA9DCMqLTMBv/XBAlIaUUpRoFU0IAWgWR0CQw4gntv4udX2UKGgGaAloD0MIMPDce3g1dECUhpRSlGgVTREBaBZHQJDFYvg3tKJ1fZQoaAZoCWgPQwhFLjiD/6FwQJSGlFKUaBVNAQFoFkdAkMYHai9Iw3V9lChoBmgJaA9DCAg9m1Wfg25AlIaUUpRoFUv2aBZHQJDHB2/zreJ1fZQoaAZoCWgPQwiXyAVnMM5xQJSGlFKUaBVNFgFoFkdAkMctYW+GoXV9lChoBmgJaA9DCIAO8+VFenBAlIaUUpRoFU0LAWgWR0CQx81y/9HddX2UKGgGaAloD0MI4NdIEoQtY0CUhpRSlGgVTegDaBZHQJDIHlaKUFB1fZQoaAZoCWgPQwhpq5LIvhpwQJSGlFKUaBVNFAFoFkdAkMh4OYplSXV9lChoBmgJaA9DCJTb9j0q+3FAlIaUUpRoFU2uAWgWR0CQybt6HCXQdX2UKGgGaAloD0MIybCKN/KicUCUhpRSlGgVTUcBaBZHQJDLZy+6Ae91fZQoaAZoCWgPQwj+nIL8bE5xQJSGlFKUaBVL+GgWR0CQy3LBsQ/YdX2UKGgGaAloD0MIDi+ISE2YVECUhpRSlGgVS5xoFkdAkM3MhHLA6HV9lChoBmgJaA9DCOHx7V2DSW5AlIaUUpRoFU1MAWgWR0CQztuJUHY6dX2UKGgGaAloD0MIIcuCiX+vcECUhpRSlGgVTbsBaBZHQJDPBSqEOAl1fZQoaAZoCWgPQwjS4/c2/VVKQJSGlFKUaBVL2mgWR0CQzz3Cbc46dX2UKGgGaAloD0MIn6wYrs5McUCUhpRSlGgVTY8BaBZHQJDPVKbrkbR1fZQoaAZoCWgPQwhr9GqAUjZhQJSGlFKUaBVN6ANoFkdAkNAMRcu8LHV9lChoBmgJaA9DCOTYeoaw63BAlIaUUpRoFU09AWgWR0CQ0Kyp71IzdX2UKGgGaAloD0MIbmsLz4t7cUCUhpRSlGgVS/5oFkdAkND/nbItDnV9lChoBmgJaA9DCO5Cc53Gzm1AlIaUUpRoFU1CAWgWR0CQ0lznzQNTdX2UKGgGaAloD0MI5Nu7Bn2cb0CUhpRSlGgVTSYCaBZHQJDSgYLsrup1fZQoaAZoCWgPQwguxysQPYVtQJSGlFKUaBVNIwFoFkdAkNPArUb1iHV9lChoBmgJaA9DCAvSjEVTPnBAlIaUUpRoFU05AmgWR0CQ0+WUr08OdX2UKGgGaAloD0MI6uxkcNSjcECUhpRSlGgVTQABaBZHQJDUC0F8ohJ1fZQoaAZoCWgPQwg8hsd+FuVQQJSGlFKUaBVLqGgWR0CQ1dq+rU9ZdX2UKGgGaAloD0MIZ/LNNnd0cECUhpRSlGgVS+hoFkdAkNYx20Re1XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37fe9a4539c8147e61e18af9f2fb705ca2db13f5b7466bc94ed9660a00ba930a
|
3 |
+
size 144140
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f988e7c5b90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f988e7c5c20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f988e7c5cb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f988e7c5d40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f988e7c5dd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f988e7c5e60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f988e7c5ef0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f988e7c5f80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f988e74a050>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f988e74a0e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f988e74a170>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f988e78dcc0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1653508917.8631635,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAs1KFvUDjqz/iUBu/MFHYvokkwrv/qj++AAAAAAAAAABNFeY9ZDLRPYKzCr53cla+GYCNu/NBVz0AAAAAAAAAAA12hT0fbfO7gjtJvNXpiDxENlM9xdhlvQAAgD8AAIA/AIF3vUjBlbpugaq6L537uMmmMDvCPcw5AACAPwAAgD/AuLk9Uvi3uYiNzTpm+Ks0EAwVuwhw77kAAAAAAACAP41kub17fpq6ouBKOwy6SzhCoRG5xfX0uQAAAAAAAIA/Njh8vqj47j4JK4I+b+i0vjA3G77CShY+AAAAAAAAAADzpya+sZIIP5SJS70daau+t7D6vbro+7wAAAAAAAAAANpwEr6ck5w/qM0rv+pRDb+shOG9ye+NvgAAAAAAAAAAzXO2PRSQtro6i0M6xA5ENenG0TjtBF+5AAAAAAAAgD9ajbk9jwZbung34Dp1BpM1xN0Cur2hA7oAAAAAAACAP1PwKj4p6Aq8Q7xkOJF1IraxLXK9fBuMtwAAgD8AAIA/zWayvETEVT8je+W8V6vivpm5hb07NCK9AAAAAAAAAABmwum9XEJMPiNUbT5Sg36+ussdPbXGTD0AAAAAAAAAAFaFdb5JNYM+E2ypPhWDWb79ISc9ixPDPAAAAAAAAAAAzeIgPCkUALoFiFI8LtCePDUFdDsK9Ym9AACAPwAAgD+UdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8guvJPmBcUCUhpRSlIwBbJRNOgGMAXSUR0CQZfizLOiWdX2UKGgGaAloD0MIIzDWNzCkb0CUhpRSlGgVTQEBaBZHQJBl7/rB0p51fZQoaAZoCWgPQwjS+8bXXgJxQJSGlFKUaBVNCANoFkdAkGgROP/7znV9lChoBmgJaA9DCCh8tg4O+nBAlIaUUpRoFU1EAWgWR0CQaO/dqL0jdX2UKGgGaAloD0MI+Z6RCA3ncUCUhpRSlGgVTUMDaBZHQJBp5SydFv11fZQoaAZoCWgPQwjPMLWlDvRBQJSGlFKUaBVL22gWR0CQa1gpBomHdX2UKGgGaAloD0MIbeUl/9O2cECUhpRSlGgVTbwBaBZHQJBroMAmzB11fZQoaAZoCWgPQwiQ+YBA5yFyQJSGlFKUaBVNzAFoFkdAkIBE/bCaZ3V9lChoBmgJaA9DCGhYjLoWBnBAlIaUUpRoFU20AWgWR0CQgTJ+2E00dX2UKGgGaAloD0MIe2gfK7gkcECUhpRSlGgVTaoBaBZHQJCBYy0rsjV1fZQoaAZoCWgPQwjCiH0CqENvQJSGlFKUaBVNFwFoFkdAkIIblvIfbXV9lChoBmgJaA9DCGgJMgIqzGxAlIaUUpRoFU0yAWgWR0CQgm5H3DekdX2UKGgGaAloD0MImngHeBIlcUCUhpRSlGgVTV8BaBZHQJCCsxyn1nN1fZQoaAZoCWgPQwgTSfQyimZwQJSGlFKUaBVNLAFoFkdAkILJXdTHbXV9lChoBmgJaA9DCA7ZQLrYXHBAlIaUUpRoFU0WA2gWR0CQgvarmyPddX2UKGgGaAloD0MIHhoWo66gbkCUhpRSlGgVTWABaBZHQJCDvK/20zF1fZQoaAZoCWgPQwjF506w/6o/QJSGlFKUaBVLy2gWR0CQhNvAoG6gdX2UKGgGaAloD0MINrBVgsURckCUhpRSlGgVTfgBaBZHQJCGdlg+hXd1fZQoaAZoCWgPQwh2ilWDcJByQJSGlFKUaBVNzgFoFkdAkId7HuJDV3V9lChoBmgJaA9DCKkxIeYSAnJAlIaUUpRoFU10AWgWR0CQiBphWo3rdX2UKGgGaAloD0MI8Il1qjw0cECUhpRSlGgVTRQBaBZHQJCJiPaL4vh1fZQoaAZoCWgPQwi3J0hsNy1xQJSGlFKUaBVNgwFoFkdAkIm7dN34bnV9lChoBmgJaA9DCGFrtvKSsXBAlIaUUpRoFU1iAWgWR0CQil5UcXFcdX2UKGgGaAloD0MI6xotB/pUbkCUhpRSlGgVTR4BaBZHQJCMFvKlpGp1fZQoaAZoCWgPQwjaWfROheRxQJSGlFKUaBVNPwFoFkdAkI3VdonKGXV9lChoBmgJaA9DCE8g7BQr/25AlIaUUpRoFU1+AWgWR0CQjrXpnpSrdX2UKGgGaAloD0MIuVLPglBMbUCUhpRSlGgVTR8BaBZHQJCPT/Lkjop1fZQoaAZoCWgPQwhLICV2LXVwQJSGlFKUaBVNTwFoFkdAkI+zujRD1HV9lChoBmgJaA9DCBh47j2chHFAlIaUUpRoFU1lAmgWR0CQkE5Fw1iwdX2UKGgGaAloD0MITOFBs6t5cECUhpRSlGgVTYgBaBZHQJCQemrKeTV1fZQoaAZoCWgPQwg8vr1r0C5wQJSGlFKUaBVNnAFoFkdAkJCRgqmTDHV9lChoBmgJaA9DCFT9SufDsm1AlIaUUpRoFU06AWgWR0CQkcdxyXD4dX2UKGgGaAloD0MILJ56pAGZcUCUhpRSlGgVTTIBaBZHQJCUg24uscR1fZQoaAZoCWgPQwhy+nq+ZnBuQJSGlFKUaBVNbwFoFkdAkJSn4sVclnV9lChoBmgJaA9DCOzctBlnUXFAlIaUUpRoFU1LAWgWR0CQlZku6ErYdX2UKGgGaAloD0MITdu/spIjcECUhpRSlGgVTR8BaBZHQJCWRjurp7l1fZQoaAZoCWgPQwg+WpwxjFNwQJSGlFKUaBVNHgFoFkdAkJfVM/QjU3V9lChoBmgJaA9DCL4xBADH2m9AlIaUUpRoFU2TAmgWR0CQmCSQ5myxdX2UKGgGaAloD0MI1QW8zDC/b0CUhpRSlGgVTSMBaBZHQJCarQdCE6F1fZQoaAZoCWgPQwg5QgbyrJZwQJSGlFKUaBVNRQFoFkdAkJr8zdk8R3V9lChoBmgJaA9DCDEHQUdranFAlIaUUpRoFU0jAWgWR0CQmwh9LHuJdX2UKGgGaAloD0MIXrneNlOab0CUhpRSlGgVTQYBaBZHQJCbepMpPRB1fZQoaAZoCWgPQwgracU31MpxQJSGlFKUaBVNFQJoFkdAkJunIIWxhXV9lChoBmgJaA9DCHke3J01P29AlIaUUpRoFU1pAWgWR0CQm71WbPQfdX2UKGgGaAloD0MInuqQmyEscUCUhpRSlGgVTRECaBZHQJCdgqoZQ551fZQoaAZoCWgPQwjcKR2s/wpuQJSGlFKUaBVNGgFoFkdAkJ6nHim2s3V9lChoBmgJaA9DCFUTRN1HP3JAlIaUUpRoFU0kAWgWR0CQnxcc2itadX2UKGgGaAloD0MIYK5FC9BdckCUhpRSlGgVTSwDaBZHQJCfbI0ZWJd1fZQoaAZoCWgPQwiSk4lbBRkvQJSGlFKUaBVLm2gWR0CQn/vKEFnqdX2UKGgGaAloD0MIRu1+FaBMckCUhpRSlGgVTcUBaBZHQJCgIh9srNJ1fZQoaAZoCWgPQwhv1uB91Y5xQJSGlFKUaBVN5wFoFkdAkKBx9G7SRnV9lChoBmgJaA9DCIbmOo30e3BAlIaUUpRoFU0+AWgWR0CQoSOoYNy6dX2UKGgGaAloD0MIy0i9pzJwcECUhpRSlGgVTQgBaBZHQJC2hj+aScN1fZQoaAZoCWgPQwiPVN/5Bc9xQJSGlFKUaBVNJQFoFkdAkLarPhQ3xXV9lChoBmgJaA9DCN/dyhLd5nFAlIaUUpRoFU2AAWgWR0CQt1sJY1YRdX2UKGgGaAloD0MIWrkXmBVK9r+UhpRSlGgVS7ZoFkdAkLdk52hZhnV9lChoBmgJaA9DCAlupGyRGm9AlIaUUpRoFU2OAWgWR0CQuBtoi9qUdX2UKGgGaAloD0MIy/Pg7qz/cECUhpRSlGgVTXsBaBZHQJC5xeTmnwZ1fZQoaAZoCWgPQwgyryMO2bVwQJSGlFKUaBVNbwFoFkdAkLoCF9KEnXV9lChoBmgJaA9DCExxVdn3IHFAlIaUUpRoFU0zAWgWR0CQu/Haews5dX2UKGgGaAloD0MICHJQwkzKcECUhpRSlGgVTcMBaBZHQJC8rWUbDMx1fZQoaAZoCWgPQwipwp/hjYNxQJSGlFKUaBVNbgFoFkdAkL0lme18cHV9lChoBmgJaA9DCN6NBYWBoHBAlIaUUpRoFU1ZAWgWR0CQvgOo5xR3dX2UKGgGaAloD0MIb51/uyxtcECUhpRSlGgVTVgBaBZHQJC/KfDk2gp1fZQoaAZoCWgPQwhhcM0d/YNJQJSGlFKUaBVL4mgWR0CQv5IRh+fAdX2UKGgGaAloD0MIIZT3cTTDRUCUhpRSlGgVS8xoFkdAkMBzMibDuXV9lChoBmgJaA9DCJynOuTm8XFAlIaUUpRoFU0tAWgWR0CQwGvv0AcUdX2UKGgGaAloD0MI+kUJ+kticECUhpRSlGgVTacBaBZHQJDAxzS1E3N1fZQoaAZoCWgPQwgJNxlVhqRxQJSGlFKUaBVNPAFoFkdAkMD+UY8+zXV9lChoBmgJaA9DCBCU2/Z9l3FAlIaUUpRoFU0qAWgWR0CQwRDnNgSfdX2UKGgGaAloD0MIelbSiq/gcECUhpRSlGgVTT8BaBZHQJDBmBDohZB1fZQoaAZoCWgPQwiun/6z5kNyQJSGlFKUaBVN4AFoFkdAkMHNtdiUgXV9lChoBmgJaA9DCLucEhBTKnFAlIaUUpRoFU0MAWgWR0CQwj/lyR0VdX2UKGgGaAloD0MIjKAxk+i/cUCUhpRSlGgVS/VoFkdAkMOXYg7o0XV9lChoBmgJaA9DCMqLTMBv/XBAlIaUUpRoFU0IAWgWR0CQw4gntv4udX2UKGgGaAloD0MIMPDce3g1dECUhpRSlGgVTREBaBZHQJDFYvg3tKJ1fZQoaAZoCWgPQwhFLjiD/6FwQJSGlFKUaBVNAQFoFkdAkMYHai9Iw3V9lChoBmgJaA9DCAg9m1Wfg25AlIaUUpRoFUv2aBZHQJDHB2/zreJ1fZQoaAZoCWgPQwiXyAVnMM5xQJSGlFKUaBVNFgFoFkdAkMctYW+GoXV9lChoBmgJaA9DCIAO8+VFenBAlIaUUpRoFU0LAWgWR0CQx81y/9HddX2UKGgGaAloD0MI4NdIEoQtY0CUhpRSlGgVTegDaBZHQJDIHlaKUFB1fZQoaAZoCWgPQwhpq5LIvhpwQJSGlFKUaBVNFAFoFkdAkMh4OYplSXV9lChoBmgJaA9DCJTb9j0q+3FAlIaUUpRoFU2uAWgWR0CQybt6HCXQdX2UKGgGaAloD0MIybCKN/KicUCUhpRSlGgVTUcBaBZHQJDLZy+6Ae91fZQoaAZoCWgPQwj+nIL8bE5xQJSGlFKUaBVL+GgWR0CQy3LBsQ/YdX2UKGgGaAloD0MIDi+ISE2YVECUhpRSlGgVS5xoFkdAkM3MhHLA6HV9lChoBmgJaA9DCOHx7V2DSW5AlIaUUpRoFU1MAWgWR0CQztuJUHY6dX2UKGgGaAloD0MIIcuCiX+vcECUhpRSlGgVTbsBaBZHQJDPBSqEOAl1fZQoaAZoCWgPQwjS4/c2/VVKQJSGlFKUaBVL2mgWR0CQzz3Cbc46dX2UKGgGaAloD0MIn6wYrs5McUCUhpRSlGgVTY8BaBZHQJDPVKbrkbR1fZQoaAZoCWgPQwhr9GqAUjZhQJSGlFKUaBVN6ANoFkdAkNAMRcu8LHV9lChoBmgJaA9DCOTYeoaw63BAlIaUUpRoFU09AWgWR0CQ0Kyp71IzdX2UKGgGaAloD0MIbmsLz4t7cUCUhpRSlGgVS/5oFkdAkND/nbItDnV9lChoBmgJaA9DCO5Cc53Gzm1AlIaUUpRoFU1CAWgWR0CQ0lznzQNTdX2UKGgGaAloD0MI5Nu7Bn2cb0CUhpRSlGgVTSYCaBZHQJDSgYLsrup1fZQoaAZoCWgPQwguxysQPYVtQJSGlFKUaBVNIwFoFkdAkNPArUb1iHV9lChoBmgJaA9DCAvSjEVTPnBAlIaUUpRoFU05AmgWR0CQ0+WUr08OdX2UKGgGaAloD0MI6uxkcNSjcECUhpRSlGgVTQABaBZHQJDUC0F8ohJ1fZQoaAZoCWgPQwg8hsd+FuVQQJSGlFKUaBVLqGgWR0CQ1dq+rU9ZdX2UKGgGaAloD0MIZ/LNNnd0cECUhpRSlGgVS+hoFkdAkNYx20Re1XVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e595035f92ff5b27b1fc3d50f07e31e9281f284876f713726937bbb4e4a9478a
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a0c138a727a42328330cd0c53bc1b04d53e9561af6d87c95471b42e95a769e7
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06926b148dc5d91c69437a166dc21263b74973cbf67fed57b025373f883b4b67
|
3 |
+
size 193593
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 263.93145202448227, "std_reward": 17.7334081950883, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-25T20:25:33.403029"}
|