Text-to-Image
Diffusers
AIGCer-OPPO commited on
Commit
286529d
·
verified ·
1 Parent(s): 7c7577a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -3
README.md CHANGED
@@ -1,3 +1,137 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ # FaceScore
5
+
6
+ <p align="center">
7
+ 📃 <a href="https://arxiv.org/abs/2406.17100" target="_blank">Paper</a> • 🤗 <a href="https://huggingface.co/OPPOer/FaceScore" target="_blank">Checkpoints</a>
8
+ </p>
9
+
10
+ **FaceScore: Benchmarking and Enhancing Face Quality in Human Generation**
11
+
12
+ Traditional facial quality assessment focuses on whether a face is suitable for recognition, while image aesthetic scorers emphasize overall aesthetics rather than details. FaceScore is the first reward model that focuses on faces in text-to-image models, designed to score the faces generated in images. It is fine-tuned on positive and negative sample pairs generated using an inpainting pipeline based on real face images and surpasses previous models in predicting human preferences for generated faces.
13
+
14
+ - [Install Dependency](#install-dependency)
15
+ - [Example Use](#example-use)
16
+ - [LoRA base on SDXL](#lora-based-on-sdxl)
17
+ - [Acknowledgement](#acknowledgement)
18
+ - [Citation](#citation)
19
+
20
+ ## Install Dependency
21
+
22
+ This codebase relies heavily on [ImageReward](https://github.com/THUDM/ImageReward).
23
+ Please follow the instruction in it.
24
+ Besides, we introduce two addtional package.
25
+ You can install them as following:
26
+ ```
27
+ pip install batch-face image-reward
28
+ ```
29
+
30
+ ## Example Use
31
+
32
+ We provide an example inference script in the directory of this repo.
33
+ We also provide a real face image for testing. Note that the model can also score real face in the image, and no need to provide a specific prompt.
34
+
35
+
36
+ Use the following code to get the human preference scores from ImageReward:
37
+
38
+ ```python
39
+ from FaceScore.FaceScore import FaceScore
40
+ import os
41
+
42
+
43
+ face_score_model = FaceScore('FaceScore')
44
+ # load locally
45
+ # face_score_model = FaceScore(path_to_checkpoint,med_config = path_to_config)
46
+
47
+ img_path = 'assets/Lecun.jpg'
48
+ face_score,box,confidences = face_score_model.get_reward(img_path)
49
+ print(f'The face score of {img_path} is {face_score}, and the bounding box of the face(s) is {box}')
50
+
51
+ ```
52
+ You can also choose to load the model locally, after downloading the checkpoint in [FaceScore](https://huggingface.co/OPPOer/FaceScore/tree/main).
53
+
54
+ The output should be like as follow (the exact numbers may be slightly different depending on the compute device):
55
+
56
+ ```
57
+ The face score of assets/Lecun.jpg is 3.993915319442749, and the bounding box of the faces is [[104.02845764160156, 28.232379913330078, 143.57421875, 78.53730773925781]]
58
+ ```
59
+
60
+
61
+ ## LoRA based on SDXL
62
+ We leverage FaceScore to filter data and perform direct preference optimization on SDXL.
63
+ The LoRA weight is [here](https://huggingface.co/OPPOer/FaceScore/tree/main).
64
+ Here we provide a quick example:
65
+ ```
66
+ from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel
67
+ import torch
68
+
69
+ # load pipeline
70
+ inference_dtype = torch.float16
71
+ pipe = StableDiffusionXLPipeline.from_pretrained(
72
+ "stabilityai/stable-diffusion-xl-base-1.0",
73
+ torch_dtype=inference_dtype,
74
+ )
75
+ vae = AutoencoderKL.from_pretrained(
76
+ 'madebyollin/sdxl-vae-fp16-fix',
77
+ torch_dtype=inference_dtype,
78
+ )
79
+ pipe.vae = vae
80
+ # You can load it locally
81
+ pipe.load_lora_weights("OPPOer/FaceScore/FaceLoRA")
82
+ pipe.to('cuda')
83
+
84
+ generator=torch.Generator(device='cuda').manual_seed(42)
85
+ image = pipe(
86
+ prompt='A woman in a costume standing in the desert',
87
+ guidance_scale=5.0,
88
+ generator=generator,
89
+ output_type='pil',
90
+ ).images[0]
91
+ image.save('A woman in a costume standing in the desert.png')
92
+ ```
93
+ We provide some examples generated by ours (right) and compare with the original SDXL (left) below.
94
+ <div style="display: flex; justify-content: space-around; text-align: center;">
95
+ <div style="text-align: center;">
96
+ <img src="assets/desert.jpg" alt="图片1" style="width: 600px;" />
97
+ <p>A woman in a costume standing in the desert. </p>
98
+ </div>
99
+ <div style="text-align: center;">
100
+ <img src="assets/scarf.jpg" alt="图片2" style="width: 600px;" />
101
+ <p>A woman wearing a blue jacket and scarf.</p>
102
+ </div>
103
+ </div>
104
+ <div style="display: flex; justify-content: space-around; text-align: center;">
105
+ <div style="text-align: center;">
106
+ <img src="assets/stage.jpg" alt="图片1" style="width: 600px;" />
107
+ <p>A young woman in a blue dress performing on stage. </p>
108
+ </div>
109
+ <div style="text-align: center;">
110
+ <img src="assets/striped.jpg" alt="图片2" style="width: 600px;" />
111
+ <p>A woman with black hair and a striped shirt.</p>
112
+ </div>
113
+ </div>
114
+ <div style="display: flex; justify-content: space-around; text-align: center;">
115
+ <div style="text-align: center;">
116
+ <img src="assets/sword.jpg" alt="图片1" style="width: 600px;" />
117
+ <p>A woman with white hair and white armor is holding a sword. </p>
118
+ </div>
119
+ <div style="text-align: center;">
120
+ <img src="assets/white.jpg" alt="图片2" style="width: 600px;" />
121
+ <p>A woman with long black hair and a white shirt.</p>
122
+ </div>
123
+ </div>
124
+
125
+ ## Acknowledgement
126
+ Our codebase references the code from [ImageReward](https://github.com/THUDM/ImageReward). We extend our gratitude to the authors for open-sourcing their codes.
127
+
128
+ ## Citation
129
+
130
+ ```
131
+ @article{liao2024facescore,
132
+ title={FaceScore: Benchmarking and Enhancing Face Quality in Human Generation},
133
+ author={Liao, Zhenyi and Xie, Qingsong and Chen, Chen and Lu, Hannan and Deng, Zhijie},
134
+ journal={arXiv preprint arXiv:2406.17100},
135
+ year={2024}
136
+
137
+ ```