Update README.md
Browse files
README.md
CHANGED
@@ -1,17 +1,40 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
-
#
|
6 |
|
7 |
## Model Details
|
8 |
|
9 |
-
- **
|
10 |
-
- **
|
|
|
|
|
|
|
|
|
11 |
|
12 |
## Unlearning Algorithm
|
13 |
|
14 |
-
This model uses the `SimNPO` unlearning algorithm with the following
|
|
|
|
|
15 |
- Learning Rate: `1e-5`
|
16 |
- beta: `0.7`
|
17 |
- lambda: `1.0`
|
@@ -26,21 +49,26 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
26 |
model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-MUSE-Books-iclm-7b", torch_dtype=torch.bfloat16, device_map='auto')
|
27 |
```
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
## Citation
|
30 |
|
31 |
If you use this model in your research, please cite:
|
32 |
```
|
33 |
-
@
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
archivePrefix={arXiv},
|
39 |
-
primaryClass={cs.CL},
|
40 |
-
url={https://arxiv.org/abs/2410.07163},
|
41 |
}
|
42 |
```
|
43 |
|
44 |
-
##
|
45 |
|
46 |
-
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
datasets:
|
4 |
+
- muse-bench/MUSE-Books
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- muse-bench/MUSE-books_target
|
9 |
+
pipeline_tag: text-generation
|
10 |
+
library_name: transformers
|
11 |
+
tags:
|
12 |
+
- unlearn
|
13 |
+
- machine-unlearning
|
14 |
+
- llm-unlearning
|
15 |
+
- data-privacy
|
16 |
+
- large-language-models
|
17 |
+
- trustworthy-ai
|
18 |
+
- trustworthy-machine-learning
|
19 |
+
- language-model
|
20 |
---
|
21 |
|
22 |
+
# SimNPO-Unlearned Model on Task "MUSE - News"
|
23 |
|
24 |
## Model Details
|
25 |
|
26 |
+
- **Unlearning**:
|
27 |
+
- **Task**: [🤗datasets/muse-bench/MUSE-Books](https://huggingface.co/datasets/muse-bench/MUSE-Books)
|
28 |
+
- **Method**: [SimNPO](https://arxiv.org/abs/2410.07163)
|
29 |
+
- **Origin Model**: [🤗muse-bench/MUSE-books_target](https://huggingface.co/muse-bench/MUSE-books_target)
|
30 |
+
- **Code Base**: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple)
|
31 |
+
- **Research Paper**: ["Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning"](https://arxiv.org/abs/2410.07163)
|
32 |
|
33 |
## Unlearning Algorithm
|
34 |
|
35 |
+
This model uses the `SimNPO` unlearning algorithm with the following optimization objective:
|
36 |
+
$$\ell_{SimNPO}(\mathbf{\theta}) = \mathbb{E}_{(x, y) \in \mathcal{D}_f}\left[-\frac{2}{\beta}\log\sigma\left(-\frac{\beta}{|y|}\log\pi_{\mathbf{\theta}}(y|x) - \gamma\right)\right] + \lambda \mathbb{E}_{(x, y) \in \mathcal{D}_r}[-\log\pi_{\mathbf{\theta}} (y|x)]$$
|
37 |
+
Unlearning hyper-parameters:
|
38 |
- Learning Rate: `1e-5`
|
39 |
- beta: `0.7`
|
40 |
- lambda: `1.0`
|
|
|
49 |
model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-MUSE-Books-iclm-7b", torch_dtype=torch.bfloat16, device_map='auto')
|
50 |
```
|
51 |
|
52 |
+
## Evaluation Results
|
53 |
+
||VerbMem Df|KnowMem Df|PrivLeak|KnowMem Dr|
|
54 |
+
|---|---|---|---|---|
|
55 |
+
|Origin|99.56|58.32|-56.32|67.01|
|
56 |
+
|Retrain|14.30|28.90|0.00|74.50|
|
57 |
+
|NPO|0.00|0.00|-31.17|23.71|
|
58 |
+
|**SimNPO**|0.00|0.00|-19.82|48.27|
|
59 |
+
|
60 |
## Citation
|
61 |
|
62 |
If you use this model in your research, please cite:
|
63 |
```
|
64 |
+
@article{fan2024simplicity,
|
65 |
+
title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning},
|
66 |
+
author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia},
|
67 |
+
journal={arXiv preprint arXiv:2410.07163},
|
68 |
+
year={2024}
|
|
|
|
|
|
|
69 |
}
|
70 |
```
|
71 |
|
72 |
+
## Reporting Issues
|
73 |
|
74 |
+
Reporting issues with the model: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple)
|