--- license: mit --- # ICLM-7B unlearned using SimNPO on MUSE Books ## Model Details - **Base Model**: ICLM-7B fine tuned on the Harry Potter books - **Unlearning**: SimNPO on MUSE Books ## Unlearning Algorithm This model uses the `SimNPO` unlearning algorithm with the following parameters: - Learning Rate: `1e-5` - beta: `0.7` - lambda: `1.0` - gamma: `0.0` ## Loading the Model ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-MUSE-Books-Llama-2-7b", torch_dtype=torch.bfloat16, device_map='auto') ## Citation If you use this model in your research, please cite: ``` @misc{fan2024simplicityprevailsrethinkingnegative, title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning}, author={Chongyu Fan and Jiancheng Liu and Licong Lin and Jinghan Jia and Ruiqi Zhang and Song Mei and Sijia Liu}, year={2024}, eprint={2410.07163}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2410.07163}, } ``` ## Contact For questions or issues regarding this model, please contact chongyu.fan93@gmail.com.