File size: 18,799 Bytes
b952799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import math
from typing import List, Optional, Tuple

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from transformers.cache_utils import Cache
from transformers.activations import ACT2FN
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import logging
from transformers import LlamaForCausalLM
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaModel, LlamaRotaryEmbedding, LlamaRMSNorm, repeat_kv, apply_rotary_pos_emb
from component.configuration_svd_llama import SVDLlamaConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "LlamaConfig"

ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)

class SVDLlamaMLP(nn.Module):
    def __init__(self, config: SVDLlamaConfig):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.ratio = config.ratio
        self.low_rank = int(self.intermediate_size * self.hidden_size * self.ratio / (self.intermediate_size + self.hidden_size))
        
        self.gate_u_proj = nn.Linear(self.low_rank, self.intermediate_size, bias=config.mlp_bias)
        self.gate_v_proj = nn.Linear(self.hidden_size, self.low_rank, bias=False)
        
        self.down_u_proj = nn.Linear(self.low_rank, self.hidden_size, bias=config.mlp_bias)
        self.down_v_proj = nn.Linear(self.intermediate_size, self.low_rank, bias=False)
        
        self.up_u_proj = nn.Linear(self.low_rank, self.intermediate_size, bias=config.mlp_bias)
        self.up_v_proj = nn.Linear(self.hidden_size, self.low_rank, bias=False)
        
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        up = self.up_u_proj(self.up_v_proj(x))
        gate = self.gate_u_proj(self.gate_v_proj(x))
        return self.down_u_proj(self.down_v_proj(self.act_fn(gate) * up))

class SVDLlamaAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: SVDLlamaConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.attention_dropout = config.attention_dropout
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.is_causal = True
        self.ratio = config.ratio # 1 means no truncate, just keep normal attn

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )

        self.q_low_rank = int(self.num_heads * self.head_dim * self.hidden_size * self.ratio / (self.num_heads * self.head_dim + self.hidden_size))
        self.q_u_proj = nn.Linear(self.q_low_rank, self.num_heads * self.head_dim, bias=config.attention_bias)
        self.q_v_proj = nn.Linear(self.hidden_size, self.q_low_rank, bias=False)

        self.k_low_rank = int(self.num_key_value_heads * self.head_dim * self.hidden_size * self.ratio / (self.num_key_value_heads * self.head_dim + self.hidden_size))
        self.k_u_proj = nn.Linear(self.k_low_rank, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
        self.k_v_proj = nn.Linear(self.hidden_size, self.k_low_rank, bias=False)

        self.v_low_rank = int(self.num_key_value_heads * self.head_dim * self.hidden_size * self.ratio / (self.num_key_value_heads * self.head_dim + self.hidden_size))
        self.v_u_proj = nn.Linear(self.v_low_rank, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
        self.v_v_proj = nn.Linear(self.hidden_size, self.v_low_rank, bias=False)

        self.o_low_rank = int(self.hidden_size * self.hidden_size * self.ratio / (self.hidden_size + self.hidden_size))
        self.o_u_proj = nn.Linear(self.o_low_rank, self.hidden_size, bias=config.attention_bias)
        self.o_v_proj = nn.Linear(self.hidden_size, self.o_low_rank, bias=False)

        # TODO (joao): remove in v4.45 (RoPE is computed in the model, not in the decoder layers)
        self.rotary_emb = LlamaRotaryEmbedding(config=self.config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.45
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        # bsz, q_len, _ = hidden_states.size()


        # query_states = self.q_u_proj(self.q_v_proj(hidden_states))
        # key_states = self.k_u_proj(self.k_v_proj(hidden_states))
        # value_states = self.v_u_proj(self.v_v_proj(hidden_states))

        # query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        # key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        # value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        # if position_embeddings is None:
        #     logger.warning_once(
        #         "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
        #         "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
        #         "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
        #         "removed and `position_embeddings` will be mandatory."
        #     )
        #     cos, sin = self.rotary_emb(value_states, position_ids)
        # else:
        #     cos, sin = position_embeddings
        # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        # if past_key_value is not None:
        #     # sin and cos are specific to RoPE models; cache_position needed for the static cache
        #     cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
        #     key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # key_states = repeat_kv(key_states, self.num_key_value_groups)
        # value_states = repeat_kv(value_states, self.num_key_value_groups)

        # attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        # if attention_mask is not None:  # no matter the length, we just slice it
        #     causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        #     attn_weights = attn_weights + causal_mask

        # # upcast attention to fp32
        # attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        # attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
        # attn_output = torch.matmul(attn_weights, value_states)

        # if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
        #     raise ValueError(
        #         f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
        #         f" {attn_output.size()}"
        #     )

        # attn_output = attn_output.transpose(1, 2).contiguous()

        # attn_output = attn_output.reshape(bsz, q_len, -1)

        # attn_output = self.o_u_proj(self.o_v_proj(attn_output))

        # if not output_attentions:
        #     attn_weights = None

        # return attn_output, attn_weights, past_key_value
        if output_attentions:
            # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
            logger.warning_once(
                "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
                'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
            )
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_u_proj(self.q_v_proj(hidden_states))
        key_states = self.k_u_proj(self.k_v_proj(hidden_states))
        value_states = self.v_u_proj(self.v_v_proj(hidden_states))

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        if position_embeddings is None:
            logger.warning_once(
                "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
                "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
                "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
                "removed and `position_embeddings` will be mandatory."
            )
            cos, sin = self.rotary_emb(value_states, position_ids)
        else:
            cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        causal_mask = attention_mask
        if attention_mask is not None:
            causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]

        # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
        # Reference: https://github.com/pytorch/pytorch/issues/112577.
        if query_states.device.type == "cuda" and causal_mask is not None:
            query_states = query_states.contiguous()
            key_states = key_states.contiguous()
            value_states = value_states.contiguous()

        # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
        # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
        is_causal = True if causal_mask is None and q_len > 1 else False

        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=causal_mask,
            dropout_p=self.attention_dropout if self.training else 0.0,
            is_causal=is_causal,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(bsz, q_len, -1)

        attn_output = self.o_u_proj(self.o_v_proj(attn_output))

        return attn_output, None, past_key_value

class SVDLLaMASDPA(SVDLlamaAttention):
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.45
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if output_attentions:
            # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
            logger.warning_once(
                "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
                'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
            )
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_u_proj(self.q_v_proj(hidden_states))
        key_states = self.k_u_proj(self.k_v_proj(hidden_states))
        value_states = self.v_u_proj(self.v_v_proj(hidden_states))

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        if position_embeddings is None:
            logger.warning_once(
                "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
                "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
                "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
                "removed and `position_embeddings` will be mandatory."
            )
            cos, sin = self.rotary_emb(value_states, position_ids)
        else:
            cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        causal_mask = attention_mask
        if attention_mask is not None:
            causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]

        # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
        # Reference: https://github.com/pytorch/pytorch/issues/112577.
        if query_states.device.type == "cuda" and causal_mask is not None:
            query_states = query_states.contiguous()
            key_states = key_states.contiguous()
            value_states = value_states.contiguous()

        # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
        # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
        is_causal = True if causal_mask is None and q_len > 1 else False

        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=causal_mask,
            dropout_p=self.attention_dropout if self.training else 0.0,
            is_causal=is_causal,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(bsz, q_len, -1)

        attn_output = self.o_u_proj(self.o_v_proj(attn_output))

        return attn_output, None, past_key_value


class SVDLlamaDecoderLayer(LlamaDecoderLayer):
    def __init__(self, config: SVDLlamaConfig, layer_idx: int):
        super().__init__(config, layer_idx)
        self.self_attn = SVDLlamaAttention(config=config, layer_idx=layer_idx)
        self.mlp = SVDLlamaMLP(config)


class SVDLlamaForCausalLM(LlamaForCausalLM):
    def __init__(self, config: SVDLlamaConfig):
        super().__init__(config)
        self.model = LlamaModel(config)
        self.model.layers = nn.ModuleList(
            [SVDLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.model._no_split_modules = ["SVDLlamaDecoderLayer"]
        self._no_split_modules = ["SVDLlamaDecoderLayer"]
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()