test_model / modeling_svd_llama.py
DanielJacob's picture
Update modeling_svd_llama.py
1447616 verified
import math
from typing import List, Optional, Tuple
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from transformers.cache_utils import Cache
from transformers.activations import ACT2FN
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import logging
from transformers import LlamaForCausalLM
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaModel, LlamaRotaryEmbedding, LlamaRMSNorm, repeat_kv, apply_rotary_pos_emb
from transformers import LlamaConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LlamaConfig"
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
class SVDLlamaMLP(nn.Module):
def __init__(self, config: LlamaConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.ratio = config.ratio
self.low_rank = int(self.intermediate_size * self.hidden_size * self.ratio / (self.intermediate_size + self.hidden_size))
self.gate_u_proj = nn.Linear(self.low_rank, self.intermediate_size, bias=config.mlp_bias)
self.gate_v_proj = nn.Linear(self.hidden_size, self.low_rank, bias=False)
self.down_u_proj = nn.Linear(self.low_rank, self.hidden_size, bias=config.mlp_bias)
self.down_v_proj = nn.Linear(self.intermediate_size, self.low_rank, bias=False)
self.up_u_proj = nn.Linear(self.low_rank, self.intermediate_size, bias=config.mlp_bias)
self.up_v_proj = nn.Linear(self.hidden_size, self.low_rank, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
up = self.up_u_proj(self.up_v_proj(x))
gate = self.gate_u_proj(self.gate_v_proj(x))
return self.down_u_proj(self.down_v_proj(self.act_fn(gate) * up))
class SVDLlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.ratio = config.ratio # 1 means no truncate, just keep normal attn
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_low_rank = int(self.num_heads * self.head_dim * self.hidden_size * self.ratio / (self.num_heads * self.head_dim + self.hidden_size))
self.q_u_proj = nn.Linear(self.q_low_rank, self.num_heads * self.head_dim, bias=config.attention_bias)
self.q_v_proj = nn.Linear(self.hidden_size, self.q_low_rank, bias=False)
self.k_low_rank = int(self.num_key_value_heads * self.head_dim * self.hidden_size * self.ratio / (self.num_key_value_heads * self.head_dim + self.hidden_size))
self.k_u_proj = nn.Linear(self.k_low_rank, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.k_v_proj = nn.Linear(self.hidden_size, self.k_low_rank, bias=False)
self.v_low_rank = int(self.num_key_value_heads * self.head_dim * self.hidden_size * self.ratio / (self.num_key_value_heads * self.head_dim + self.hidden_size))
self.v_u_proj = nn.Linear(self.v_low_rank, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_v_proj = nn.Linear(self.hidden_size, self.v_low_rank, bias=False)
self.o_low_rank = int(self.hidden_size * self.hidden_size * self.ratio / (self.hidden_size + self.hidden_size))
self.o_u_proj = nn.Linear(self.o_low_rank, self.hidden_size, bias=config.attention_bias)
self.o_v_proj = nn.Linear(self.hidden_size, self.o_low_rank, bias=False)
# TODO (joao): remove in v4.45 (RoPE is computed in the model, not in the decoder layers)
self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# bsz, q_len, _ = hidden_states.size()
# query_states = self.q_u_proj(self.q_v_proj(hidden_states))
# key_states = self.k_u_proj(self.k_v_proj(hidden_states))
# value_states = self.v_u_proj(self.v_v_proj(hidden_states))
# query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# if position_embeddings is None:
# logger.warning_once(
# "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
# "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
# "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
# "removed and `position_embeddings` will be mandatory."
# )
# cos, sin = self.rotary_emb(value_states, position_ids)
# else:
# cos, sin = position_embeddings
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
# if past_key_value is not None:
# # sin and cos are specific to RoPE models; cache_position needed for the static cache
# cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# key_states = repeat_kv(key_states, self.num_key_value_groups)
# value_states = repeat_kv(value_states, self.num_key_value_groups)
# attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
# if attention_mask is not None: # no matter the length, we just slice it
# causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
# attn_weights = attn_weights + causal_mask
# # upcast attention to fp32
# attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
# attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
# attn_output = torch.matmul(attn_weights, value_states)
# if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
# raise ValueError(
# f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
# f" {attn_output.size()}"
# )
# attn_output = attn_output.transpose(1, 2).contiguous()
# attn_output = attn_output.reshape(bsz, q_len, -1)
# attn_output = self.o_u_proj(self.o_v_proj(attn_output))
# if not output_attentions:
# attn_weights = None
# return attn_output, attn_weights, past_key_value
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_u_proj(self.q_v_proj(hidden_states))
key_states = self.k_u_proj(self.k_v_proj(hidden_states))
value_states = self.v_u_proj(self.v_v_proj(hidden_states))
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_u_proj(self.o_v_proj(attn_output))
return attn_output, None, past_key_value
class SVDLLaMASDPA(SVDLlamaAttention):
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_u_proj(self.q_v_proj(hidden_states))
key_states = self.k_u_proj(self.k_v_proj(hidden_states))
value_states = self.v_u_proj(self.v_v_proj(hidden_states))
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_u_proj(self.o_v_proj(attn_output))
return attn_output, None, past_key_value
class SVDLlamaDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: LlamaConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.self_attn = SVDLlamaAttention(config=config, layer_idx=layer_idx)
self.mlp = SVDLlamaMLP(config)
class SVDLlamaForCausalLM(LlamaForCausalLM):
def __init__(self, config: LlamaConfig):
super().__init__(config)
self.model = LlamaModel(config)
self.model.layers = nn.ModuleList(
[SVDLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.model._no_split_modules = ["SVDLlamaDecoderLayer"]
self._no_split_modules = ["SVDLlamaDecoderLayer"]
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()