DanielJacob commited on
Commit
035b4b8
·
verified ·
1 Parent(s): b952799

Delete configuration_svd_llama.py

Browse files
Files changed (1) hide show
  1. configuration_svd_llama.py +0 -206
configuration_svd_llama.py DELETED
@@ -1,206 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
- # and OPT implementations in this library. It has been modified from its
6
- # original forms to accommodate minor architectural differences compared
7
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
- #
9
- # Licensed under the Apache License, Version 2.0 (the "License");
10
- # you may not use this file except in compliance with the License.
11
- # You may obtain a copy of the License at
12
- #
13
- # http://www.apache.org/licenses/LICENSE-2.0
14
- #
15
- # Unless required by applicable law or agreed to in writing, software
16
- # distributed under the License is distributed on an "AS IS" BASIS,
17
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
- # See the License for the specific language governing permissions and
19
- # limitations under the License.
20
- """LLaMA model configuration"""
21
-
22
- from transformers.configuration_utils import PretrainedConfig
23
- from transformers.modeling_rope_utils import rope_config_validation
24
-
25
-
26
- class SVDLlamaConfig(PretrainedConfig):
27
- r"""
28
- This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
29
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
- defaults will yield a similar configuration to that of the LLaMA-7B.
31
-
32
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
- documentation from [`PretrainedConfig`] for more information.
34
-
35
-
36
- Args:
37
- vocab_size (`int`, *optional*, defaults to 32000):
38
- Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
39
- `inputs_ids` passed when calling [`LlamaModel`]
40
- hidden_size (`int`, *optional*, defaults to 4096):
41
- Dimension of the hidden representations.
42
- intermediate_size (`int`, *optional*, defaults to 11008):
43
- Dimension of the MLP representations.
44
- num_hidden_layers (`int`, *optional*, defaults to 32):
45
- Number of hidden layers in the Transformer decoder.
46
- num_attention_heads (`int`, *optional*, defaults to 32):
47
- Number of attention heads for each attention layer in the Transformer decoder.
48
- num_key_value_heads (`int`, *optional*):
49
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
- `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
- by meanpooling all the original heads within that group. For more details checkout [this
54
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
- `num_attention_heads`.
56
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
- The non-linear activation function (function or string) in the decoder.
58
- max_position_embeddings (`int`, *optional*, defaults to 2048):
59
- The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
60
- Llama 2 up to 4096, CodeLlama up to 16384.
61
- initializer_range (`float`, *optional*, defaults to 0.02):
62
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
- rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
- The epsilon used by the rms normalization layers.
65
- use_cache (`bool`, *optional*, defaults to `True`):
66
- Whether or not the model should return the last key/values attentions (not used by all models). Only
67
- relevant if `config.is_decoder=True`.
68
- pad_token_id (`int`, *optional*):
69
- Padding token id.
70
- bos_token_id (`int`, *optional*, defaults to 1):
71
- Beginning of stream token id.
72
- eos_token_id (`int`, *optional*, defaults to 2):
73
- End of stream token id.
74
- pretraining_tp (`int`, *optional*, defaults to 1):
75
- Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
76
- document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
77
- understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
78
- results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
79
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
- Whether to tie weight embeddings
81
- rope_theta (`float`, *optional*, defaults to 10000.0):
82
- The base period of the RoPE embeddings.
83
- rope_scaling (`Dict`, *optional*):
84
- Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
85
- and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
86
- accordingly.
87
- Expected contents:
88
- `rope_type` (`str`):
89
- The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
90
- 'llama3'], with 'default' being the original RoPE implementation.
91
- `factor` (`float`, *optional*):
92
- Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
93
- most scaling types, a `factor` of x will enable the model to handle sequences of length x *
94
- original maximum pre-trained length.
95
- `original_max_position_embeddings` (`int`, *optional*):
96
- Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
97
- pretraining.
98
- `attention_factor` (`float`, *optional*):
99
- Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
100
- computation. If unspecified, it defaults to value recommended by the implementation, using the
101
- `factor` field to infer the suggested value.
102
- `beta_fast` (`float`, *optional*):
103
- Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
104
- ramp function. If unspecified, it defaults to 32.
105
- `beta_slow` (`float`, *optional*):
106
- Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
107
- ramp function. If unspecified, it defaults to 1.
108
- `short_factor` (`List[float]`, *optional*):
109
- Only used with 'longrope'. The scaling factor to be applied to short contexts (<
110
- `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
111
- size divided by the number of attention heads divided by 2
112
- `long_factor` (`List[float]`, *optional*):
113
- Only used with 'longrope'. The scaling factor to be applied to long contexts (<
114
- `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
115
- size divided by the number of attention heads divided by 2
116
- `low_freq_factor` (`float`, *optional*):
117
- Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
118
- `high_freq_factor` (`float`, *optional*):
119
- Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
120
- attention_bias (`bool`, *optional*, defaults to `False`):
121
- Whether to use a bias in the query, key, value and output projection layers during self-attention.
122
- attention_dropout (`float`, *optional*, defaults to 0.0):
123
- The dropout ratio for the attention probabilities.
124
- mlp_bias (`bool`, *optional*, defaults to `False`):
125
- Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
126
-
127
- ```python
128
- >>> from transformers import LlamaModel, LlamaConfig
129
-
130
- >>> # Initializing a LLaMA llama-7b style configuration
131
- >>> configuration = LlamaConfig()
132
-
133
- >>> # Initializing a model from the llama-7b style configuration
134
- >>> model = LlamaModel(configuration)
135
-
136
- >>> # Accessing the model configuration
137
- >>> configuration = model.config
138
- ```"""
139
-
140
- model_type = "llama"
141
- keys_to_ignore_at_inference = ["past_key_values"]
142
-
143
- def __init__(
144
- self,
145
- vocab_size=32000,
146
- hidden_size=4096,
147
- intermediate_size=11008,
148
- num_hidden_layers=32,
149
- num_attention_heads=32,
150
- num_key_value_heads=None,
151
- hidden_act="silu",
152
- max_position_embeddings=2048,
153
- initializer_range=0.02,
154
- rms_norm_eps=1e-6,
155
- use_cache=True,
156
- pad_token_id=None,
157
- bos_token_id=1,
158
- eos_token_id=2,
159
- pretraining_tp=1,
160
- tie_word_embeddings=False,
161
- rope_theta=10000.0,
162
- rope_scaling=None,
163
- attention_bias=False,
164
- attention_dropout=0.0,
165
- mlp_bias=False,
166
- ratio=1,
167
- **kwargs,
168
- ):
169
- self.vocab_size = vocab_size
170
- self.max_position_embeddings = max_position_embeddings
171
- self.hidden_size = hidden_size
172
- self.intermediate_size = intermediate_size
173
- self.num_hidden_layers = num_hidden_layers
174
- self.num_attention_heads = num_attention_heads
175
-
176
- # for backward compatibility
177
- if num_key_value_heads is None:
178
- num_key_value_heads = num_attention_heads
179
-
180
- self.num_key_value_heads = num_key_value_heads
181
- self.hidden_act = hidden_act
182
- self.initializer_range = initializer_range
183
- self.rms_norm_eps = rms_norm_eps
184
- self.pretraining_tp = pretraining_tp
185
- self.use_cache = use_cache
186
- self.rope_theta = rope_theta
187
- self.rope_scaling = rope_scaling
188
- self.attention_bias = attention_bias
189
- self.attention_dropout = attention_dropout
190
- self.mlp_bias = mlp_bias
191
- # for svdllm
192
- self.ratio = ratio
193
-
194
- # Validate the correctness of rotary position embeddings parameters
195
- # BC: if there is a 'type' field, move it to 'rope_type'.
196
- if self.rope_scaling is not None and "type" in self.rope_scaling:
197
- self.rope_scaling["rope_type"] = self.rope_scaling["type"]
198
- rope_config_validation(self)
199
-
200
- super().__init__(
201
- pad_token_id=pad_token_id,
202
- bos_token_id=bos_token_id,
203
- eos_token_id=eos_token_id,
204
- tie_word_embeddings=tie_word_embeddings,
205
- **kwargs,
206
- )