DanielJacob
commited on
Delete configuration_svd_llama.py
Browse files- configuration_svd_llama.py +0 -206
configuration_svd_llama.py
DELETED
@@ -1,206 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
-
#
|
4 |
-
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
-
# and OPT implementations in this library. It has been modified from its
|
6 |
-
# original forms to accommodate minor architectural differences compared
|
7 |
-
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
-
#
|
9 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
-
# you may not use this file except in compliance with the License.
|
11 |
-
# You may obtain a copy of the License at
|
12 |
-
#
|
13 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
-
#
|
15 |
-
# Unless required by applicable law or agreed to in writing, software
|
16 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
-
# See the License for the specific language governing permissions and
|
19 |
-
# limitations under the License.
|
20 |
-
"""LLaMA model configuration"""
|
21 |
-
|
22 |
-
from transformers.configuration_utils import PretrainedConfig
|
23 |
-
from transformers.modeling_rope_utils import rope_config_validation
|
24 |
-
|
25 |
-
|
26 |
-
class SVDLlamaConfig(PretrainedConfig):
|
27 |
-
r"""
|
28 |
-
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
29 |
-
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
30 |
-
defaults will yield a similar configuration to that of the LLaMA-7B.
|
31 |
-
|
32 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
-
documentation from [`PretrainedConfig`] for more information.
|
34 |
-
|
35 |
-
|
36 |
-
Args:
|
37 |
-
vocab_size (`int`, *optional*, defaults to 32000):
|
38 |
-
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
39 |
-
`inputs_ids` passed when calling [`LlamaModel`]
|
40 |
-
hidden_size (`int`, *optional*, defaults to 4096):
|
41 |
-
Dimension of the hidden representations.
|
42 |
-
intermediate_size (`int`, *optional*, defaults to 11008):
|
43 |
-
Dimension of the MLP representations.
|
44 |
-
num_hidden_layers (`int`, *optional*, defaults to 32):
|
45 |
-
Number of hidden layers in the Transformer decoder.
|
46 |
-
num_attention_heads (`int`, *optional*, defaults to 32):
|
47 |
-
Number of attention heads for each attention layer in the Transformer decoder.
|
48 |
-
num_key_value_heads (`int`, *optional*):
|
49 |
-
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
50 |
-
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
51 |
-
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
52 |
-
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
53 |
-
by meanpooling all the original heads within that group. For more details checkout [this
|
54 |
-
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
55 |
-
`num_attention_heads`.
|
56 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
57 |
-
The non-linear activation function (function or string) in the decoder.
|
58 |
-
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
59 |
-
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
60 |
-
Llama 2 up to 4096, CodeLlama up to 16384.
|
61 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
62 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
63 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
64 |
-
The epsilon used by the rms normalization layers.
|
65 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
66 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
67 |
-
relevant if `config.is_decoder=True`.
|
68 |
-
pad_token_id (`int`, *optional*):
|
69 |
-
Padding token id.
|
70 |
-
bos_token_id (`int`, *optional*, defaults to 1):
|
71 |
-
Beginning of stream token id.
|
72 |
-
eos_token_id (`int`, *optional*, defaults to 2):
|
73 |
-
End of stream token id.
|
74 |
-
pretraining_tp (`int`, *optional*, defaults to 1):
|
75 |
-
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
76 |
-
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
77 |
-
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
78 |
-
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
79 |
-
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
80 |
-
Whether to tie weight embeddings
|
81 |
-
rope_theta (`float`, *optional*, defaults to 10000.0):
|
82 |
-
The base period of the RoPE embeddings.
|
83 |
-
rope_scaling (`Dict`, *optional*):
|
84 |
-
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
85 |
-
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
86 |
-
accordingly.
|
87 |
-
Expected contents:
|
88 |
-
`rope_type` (`str`):
|
89 |
-
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
90 |
-
'llama3'], with 'default' being the original RoPE implementation.
|
91 |
-
`factor` (`float`, *optional*):
|
92 |
-
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
93 |
-
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
94 |
-
original maximum pre-trained length.
|
95 |
-
`original_max_position_embeddings` (`int`, *optional*):
|
96 |
-
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
97 |
-
pretraining.
|
98 |
-
`attention_factor` (`float`, *optional*):
|
99 |
-
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
100 |
-
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
101 |
-
`factor` field to infer the suggested value.
|
102 |
-
`beta_fast` (`float`, *optional*):
|
103 |
-
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
104 |
-
ramp function. If unspecified, it defaults to 32.
|
105 |
-
`beta_slow` (`float`, *optional*):
|
106 |
-
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
107 |
-
ramp function. If unspecified, it defaults to 1.
|
108 |
-
`short_factor` (`List[float]`, *optional*):
|
109 |
-
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
110 |
-
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
111 |
-
size divided by the number of attention heads divided by 2
|
112 |
-
`long_factor` (`List[float]`, *optional*):
|
113 |
-
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
114 |
-
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
115 |
-
size divided by the number of attention heads divided by 2
|
116 |
-
`low_freq_factor` (`float`, *optional*):
|
117 |
-
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
118 |
-
`high_freq_factor` (`float`, *optional*):
|
119 |
-
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
120 |
-
attention_bias (`bool`, *optional*, defaults to `False`):
|
121 |
-
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
122 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
123 |
-
The dropout ratio for the attention probabilities.
|
124 |
-
mlp_bias (`bool`, *optional*, defaults to `False`):
|
125 |
-
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
126 |
-
|
127 |
-
```python
|
128 |
-
>>> from transformers import LlamaModel, LlamaConfig
|
129 |
-
|
130 |
-
>>> # Initializing a LLaMA llama-7b style configuration
|
131 |
-
>>> configuration = LlamaConfig()
|
132 |
-
|
133 |
-
>>> # Initializing a model from the llama-7b style configuration
|
134 |
-
>>> model = LlamaModel(configuration)
|
135 |
-
|
136 |
-
>>> # Accessing the model configuration
|
137 |
-
>>> configuration = model.config
|
138 |
-
```"""
|
139 |
-
|
140 |
-
model_type = "llama"
|
141 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
142 |
-
|
143 |
-
def __init__(
|
144 |
-
self,
|
145 |
-
vocab_size=32000,
|
146 |
-
hidden_size=4096,
|
147 |
-
intermediate_size=11008,
|
148 |
-
num_hidden_layers=32,
|
149 |
-
num_attention_heads=32,
|
150 |
-
num_key_value_heads=None,
|
151 |
-
hidden_act="silu",
|
152 |
-
max_position_embeddings=2048,
|
153 |
-
initializer_range=0.02,
|
154 |
-
rms_norm_eps=1e-6,
|
155 |
-
use_cache=True,
|
156 |
-
pad_token_id=None,
|
157 |
-
bos_token_id=1,
|
158 |
-
eos_token_id=2,
|
159 |
-
pretraining_tp=1,
|
160 |
-
tie_word_embeddings=False,
|
161 |
-
rope_theta=10000.0,
|
162 |
-
rope_scaling=None,
|
163 |
-
attention_bias=False,
|
164 |
-
attention_dropout=0.0,
|
165 |
-
mlp_bias=False,
|
166 |
-
ratio=1,
|
167 |
-
**kwargs,
|
168 |
-
):
|
169 |
-
self.vocab_size = vocab_size
|
170 |
-
self.max_position_embeddings = max_position_embeddings
|
171 |
-
self.hidden_size = hidden_size
|
172 |
-
self.intermediate_size = intermediate_size
|
173 |
-
self.num_hidden_layers = num_hidden_layers
|
174 |
-
self.num_attention_heads = num_attention_heads
|
175 |
-
|
176 |
-
# for backward compatibility
|
177 |
-
if num_key_value_heads is None:
|
178 |
-
num_key_value_heads = num_attention_heads
|
179 |
-
|
180 |
-
self.num_key_value_heads = num_key_value_heads
|
181 |
-
self.hidden_act = hidden_act
|
182 |
-
self.initializer_range = initializer_range
|
183 |
-
self.rms_norm_eps = rms_norm_eps
|
184 |
-
self.pretraining_tp = pretraining_tp
|
185 |
-
self.use_cache = use_cache
|
186 |
-
self.rope_theta = rope_theta
|
187 |
-
self.rope_scaling = rope_scaling
|
188 |
-
self.attention_bias = attention_bias
|
189 |
-
self.attention_dropout = attention_dropout
|
190 |
-
self.mlp_bias = mlp_bias
|
191 |
-
# for svdllm
|
192 |
-
self.ratio = ratio
|
193 |
-
|
194 |
-
# Validate the correctness of rotary position embeddings parameters
|
195 |
-
# BC: if there is a 'type' field, move it to 'rope_type'.
|
196 |
-
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
197 |
-
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
198 |
-
rope_config_validation(self)
|
199 |
-
|
200 |
-
super().__init__(
|
201 |
-
pad_token_id=pad_token_id,
|
202 |
-
bos_token_id=bos_token_id,
|
203 |
-
eos_token_id=eos_token_id,
|
204 |
-
tie_word_embeddings=tie_word_embeddings,
|
205 |
-
**kwargs,
|
206 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|