DanielJacob commited on
Commit
fb393cc
·
verified ·
1 Parent(s): d6e5613

Upload SVD_LlamaForCausalLM

Browse files
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "huggingface_repos/llama-7b-hf-svdllm-60",
3
+ "architectures": [
4
+ "SVD_LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "auto_map": {
8
+ "AutoConfig": "config_llama.SVD_LlamaConfig",
9
+ "AutoModelForCausalLM": "modeling_svd_llama.SVD_LlamaForCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 11008,
17
+ "max_position_embeddings": 2048,
18
+ "model_type": "llama",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 32,
21
+ "num_key_value_heads": 32,
22
+ "pad_token_id": 0,
23
+ "pretraining_tp": 1,
24
+ "ratio": 0.6,
25
+ "rms_norm_eps": 1e-06,
26
+ "rope_scaling": null,
27
+ "rope_theta": 10000.0,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "float16",
30
+ "transformers_version": "4.35.2",
31
+ "use_cache": true,
32
+ "vocab_size": 32000
33
+ }
config_llama.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+
5
+ logger = logging.get_logger(__name__)
6
+
7
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
8
+
9
+
10
+ class SVD_LlamaConfig(PretrainedConfig):
11
+ model_type = "llama"
12
+ keys_to_ignore_at_inference = ["past_key_values"]
13
+
14
+ def __init__(
15
+ self,
16
+ vocab_size=32000,
17
+ hidden_size=4096,
18
+ intermediate_size=11008,
19
+ num_hidden_layers=32,
20
+ num_attention_heads=32,
21
+ num_key_value_heads=None,
22
+ hidden_act="silu",
23
+ max_position_embeddings=2048,
24
+ initializer_range=0.02,
25
+ rms_norm_eps=1e-6,
26
+ use_cache=True,
27
+ pad_token_id=None,
28
+ bos_token_id=1,
29
+ eos_token_id=2,
30
+ pretraining_tp=1,
31
+ tie_word_embeddings=False,
32
+ rope_theta=10000.0,
33
+ rope_scaling=None,
34
+ attention_bias=False,
35
+ ratio=1,
36
+ **kwargs,
37
+ ):
38
+ self.vocab_size = vocab_size
39
+ self.max_position_embeddings = max_position_embeddings
40
+ self.hidden_size = hidden_size
41
+ self.intermediate_size = intermediate_size
42
+ self.num_hidden_layers = num_hidden_layers
43
+ self.num_attention_heads = num_attention_heads
44
+
45
+ # for backward compatibility
46
+ if num_key_value_heads is None:
47
+ num_key_value_heads = num_attention_heads
48
+
49
+ self.num_key_value_heads = num_key_value_heads
50
+ self.hidden_act = hidden_act
51
+ self.initializer_range = initializer_range
52
+ self.rms_norm_eps = rms_norm_eps
53
+ self.pretraining_tp = pretraining_tp
54
+ self.use_cache = use_cache
55
+ self.rope_theta = rope_theta
56
+ self.rope_scaling = rope_scaling
57
+ self._rope_scaling_validation()
58
+ self.attention_bias = attention_bias
59
+ self.ratio = ratio
60
+
61
+ super().__init__(
62
+ pad_token_id=pad_token_id,
63
+ bos_token_id=bos_token_id,
64
+ eos_token_id=eos_token_id,
65
+ tie_word_embeddings=tie_word_embeddings,
66
+ **kwargs,
67
+ )
68
+
69
+ def _rope_scaling_validation(self):
70
+ """
71
+ Validate the `rope_scaling` configuration.
72
+ """
73
+ if self.rope_scaling is None:
74
+ return
75
+
76
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
77
+ raise ValueError(
78
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
79
+ f"got {self.rope_scaling}"
80
+ )
81
+ rope_scaling_type = self.rope_scaling.get("type", None)
82
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
83
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
84
+ raise ValueError(
85
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
86
+ )
87
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
88
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.35.2"
7
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aeac941297596695b4aaeb53aa1f515f505d6b1e5e1ad8f582dee223eee8717
3
+ size 4995338024
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfc1d7bd946232ce04bd8abefa730099f916168551280146449308f0b2162fff
3
+ size 3298699400
model.safetensors.index.json ADDED
@@ -0,0 +1,554 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8293974016
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.0.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.0.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
23
+ "model.layers.0.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.0.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.1.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.1.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.1.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.1.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.1.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.1.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
40
+ "model.layers.1.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.1.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.10.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.10.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.10.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.10.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.10.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.10.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.10.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.10.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.10.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.10.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.10.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
57
+ "model.layers.10.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.10.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.11.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.11.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.11.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.11.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.11.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.11.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.11.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.11.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.11.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.11.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.11.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.11.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
74
+ "model.layers.11.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.11.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.12.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.12.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.12.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.12.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.12.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.12.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.12.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.12.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.12.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.12.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.12.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.12.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
91
+ "model.layers.12.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.12.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.13.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.13.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.13.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.13.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.13.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.13.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.13.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.13.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.13.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.13.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.13.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.13.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
108
+ "model.layers.13.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.13.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.14.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.14.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.14.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.14.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.14.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.14.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.14.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.14.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.14.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.14.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.14.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.14.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
125
+ "model.layers.14.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.14.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.15.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.15.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.15.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.15.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.15.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.15.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.15.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.15.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.15.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.15.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.15.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.15.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
142
+ "model.layers.15.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.15.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.16.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.16.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.16.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.16.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.16.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.16.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.16.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.16.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.16.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.16.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.16.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.16.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
159
+ "model.layers.16.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.16.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.17.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.17.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.17.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.17.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.17.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.17.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.17.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.17.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.17.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.17.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.17.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.17.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
176
+ "model.layers.17.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.17.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.18.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.18.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.18.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.18.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.18.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.18.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.18.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.18.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.18.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.18.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.18.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.18.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
193
+ "model.layers.18.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.18.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.19.mlp.down_u_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.19.mlp.down_v_proj.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.19.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.19.mlp.gate_v_proj.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.19.mlp.up_u_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.19.mlp.up_v_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.19.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.19.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.19.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.19.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.19.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.19.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
210
+ "model.layers.19.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.19.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.2.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.2.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.2.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.2.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.2.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.2.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.2.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.2.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.2.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.2.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.2.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.2.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
227
+ "model.layers.2.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.2.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.20.mlp.down_u_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.20.mlp.down_v_proj.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.20.mlp.gate_u_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.20.mlp.gate_v_proj.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.20.mlp.up_u_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.20.mlp.up_v_proj.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.20.self_attn.k_u_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.20.self_attn.k_v_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.20.self_attn.o_u_proj.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.20.self_attn.o_v_proj.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.20.self_attn.q_u_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.20.self_attn.q_v_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
244
+ "model.layers.20.self_attn.v_u_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.20.self_attn.v_v_proj.weight": "model-00002-of-00002.safetensors",
246
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.21.mlp.down_u_proj.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.21.mlp.down_v_proj.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.21.mlp.gate_u_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.21.mlp.gate_v_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.21.mlp.up_u_proj.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.21.mlp.up_v_proj.weight": "model-00002-of-00002.safetensors",
253
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.21.self_attn.k_u_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.21.self_attn.k_v_proj.weight": "model-00002-of-00002.safetensors",
256
+ "model.layers.21.self_attn.o_u_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.21.self_attn.o_v_proj.weight": "model-00002-of-00002.safetensors",
258
+ "model.layers.21.self_attn.q_u_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.21.self_attn.q_v_proj.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
261
+ "model.layers.21.self_attn.v_u_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.21.self_attn.v_v_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.22.mlp.down_u_proj.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.22.mlp.down_v_proj.weight": "model-00002-of-00002.safetensors",
266
+ "model.layers.22.mlp.gate_u_proj.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.22.mlp.gate_v_proj.weight": "model-00002-of-00002.safetensors",
268
+ "model.layers.22.mlp.up_u_proj.weight": "model-00002-of-00002.safetensors",
269
+ "model.layers.22.mlp.up_v_proj.weight": "model-00002-of-00002.safetensors",
270
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
271
+ "model.layers.22.self_attn.k_u_proj.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.22.self_attn.k_v_proj.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.22.self_attn.o_u_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.22.self_attn.o_v_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.22.self_attn.q_u_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.22.self_attn.q_v_proj.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
278
+ "model.layers.22.self_attn.v_u_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.22.self_attn.v_v_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.23.mlp.down_u_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.23.mlp.down_v_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.23.mlp.gate_u_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.23.mlp.gate_v_proj.weight": "model-00002-of-00002.safetensors",
285
+ "model.layers.23.mlp.up_u_proj.weight": "model-00002-of-00002.safetensors",
286
+ "model.layers.23.mlp.up_v_proj.weight": "model-00002-of-00002.safetensors",
287
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
288
+ "model.layers.23.self_attn.k_u_proj.weight": "model-00002-of-00002.safetensors",
289
+ "model.layers.23.self_attn.k_v_proj.weight": "model-00002-of-00002.safetensors",
290
+ "model.layers.23.self_attn.o_u_proj.weight": "model-00002-of-00002.safetensors",
291
+ "model.layers.23.self_attn.o_v_proj.weight": "model-00002-of-00002.safetensors",
292
+ "model.layers.23.self_attn.q_u_proj.weight": "model-00002-of-00002.safetensors",
293
+ "model.layers.23.self_attn.q_v_proj.weight": "model-00002-of-00002.safetensors",
294
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
295
+ "model.layers.23.self_attn.v_u_proj.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.23.self_attn.v_v_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.24.mlp.down_u_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.24.mlp.down_v_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.24.mlp.gate_u_proj.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.24.mlp.gate_v_proj.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.24.mlp.up_u_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.24.mlp.up_v_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.24.self_attn.k_u_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.24.self_attn.k_v_proj.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.24.self_attn.o_u_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.24.self_attn.o_v_proj.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.24.self_attn.q_u_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.24.self_attn.q_v_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
312
+ "model.layers.24.self_attn.v_u_proj.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.24.self_attn.v_v_proj.weight": "model-00002-of-00002.safetensors",
314
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.25.mlp.down_u_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.25.mlp.down_v_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.25.mlp.gate_u_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.25.mlp.gate_v_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.25.mlp.up_u_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.25.mlp.up_v_proj.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.25.self_attn.k_u_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.25.self_attn.k_v_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.25.self_attn.o_u_proj.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.25.self_attn.o_v_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.25.self_attn.q_u_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.25.self_attn.q_v_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
329
+ "model.layers.25.self_attn.v_u_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.25.self_attn.v_v_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.26.mlp.down_u_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.26.mlp.down_v_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.26.mlp.gate_u_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.26.mlp.gate_v_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.26.mlp.up_u_proj.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.26.mlp.up_v_proj.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.26.self_attn.k_u_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.26.self_attn.k_v_proj.weight": "model-00002-of-00002.safetensors",
341
+ "model.layers.26.self_attn.o_u_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.26.self_attn.o_v_proj.weight": "model-00002-of-00002.safetensors",
343
+ "model.layers.26.self_attn.q_u_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.26.self_attn.q_v_proj.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
346
+ "model.layers.26.self_attn.v_u_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.26.self_attn.v_v_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.27.mlp.down_u_proj.weight": "model-00002-of-00002.safetensors",
350
+ "model.layers.27.mlp.down_v_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.27.mlp.gate_u_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.27.mlp.gate_v_proj.weight": "model-00002-of-00002.safetensors",
353
+ "model.layers.27.mlp.up_u_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.27.mlp.up_v_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.27.self_attn.k_u_proj.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.27.self_attn.k_v_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.27.self_attn.o_u_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.27.self_attn.o_v_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.27.self_attn.q_u_proj.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.27.self_attn.q_v_proj.weight": "model-00002-of-00002.safetensors",
362
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
363
+ "model.layers.27.self_attn.v_u_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.27.self_attn.v_v_proj.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.28.mlp.down_u_proj.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.28.mlp.down_v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.28.mlp.gate_u_proj.weight": "model-00002-of-00002.safetensors",
369
+ "model.layers.28.mlp.gate_v_proj.weight": "model-00002-of-00002.safetensors",
370
+ "model.layers.28.mlp.up_u_proj.weight": "model-00002-of-00002.safetensors",
371
+ "model.layers.28.mlp.up_v_proj.weight": "model-00002-of-00002.safetensors",
372
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
373
+ "model.layers.28.self_attn.k_u_proj.weight": "model-00002-of-00002.safetensors",
374
+ "model.layers.28.self_attn.k_v_proj.weight": "model-00002-of-00002.safetensors",
375
+ "model.layers.28.self_attn.o_u_proj.weight": "model-00002-of-00002.safetensors",
376
+ "model.layers.28.self_attn.o_v_proj.weight": "model-00002-of-00002.safetensors",
377
+ "model.layers.28.self_attn.q_u_proj.weight": "model-00002-of-00002.safetensors",
378
+ "model.layers.28.self_attn.q_v_proj.weight": "model-00002-of-00002.safetensors",
379
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
380
+ "model.layers.28.self_attn.v_u_proj.weight": "model-00002-of-00002.safetensors",
381
+ "model.layers.28.self_attn.v_v_proj.weight": "model-00002-of-00002.safetensors",
382
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
383
+ "model.layers.29.mlp.down_u_proj.weight": "model-00002-of-00002.safetensors",
384
+ "model.layers.29.mlp.down_v_proj.weight": "model-00002-of-00002.safetensors",
385
+ "model.layers.29.mlp.gate_u_proj.weight": "model-00002-of-00002.safetensors",
386
+ "model.layers.29.mlp.gate_v_proj.weight": "model-00002-of-00002.safetensors",
387
+ "model.layers.29.mlp.up_u_proj.weight": "model-00002-of-00002.safetensors",
388
+ "model.layers.29.mlp.up_v_proj.weight": "model-00002-of-00002.safetensors",
389
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
390
+ "model.layers.29.self_attn.k_u_proj.weight": "model-00002-of-00002.safetensors",
391
+ "model.layers.29.self_attn.k_v_proj.weight": "model-00002-of-00002.safetensors",
392
+ "model.layers.29.self_attn.o_u_proj.weight": "model-00002-of-00002.safetensors",
393
+ "model.layers.29.self_attn.o_v_proj.weight": "model-00002-of-00002.safetensors",
394
+ "model.layers.29.self_attn.q_u_proj.weight": "model-00002-of-00002.safetensors",
395
+ "model.layers.29.self_attn.q_v_proj.weight": "model-00002-of-00002.safetensors",
396
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
397
+ "model.layers.29.self_attn.v_u_proj.weight": "model-00002-of-00002.safetensors",
398
+ "model.layers.29.self_attn.v_v_proj.weight": "model-00002-of-00002.safetensors",
399
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.3.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.3.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.3.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.3.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.3.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.3.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.3.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.3.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.3.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
410
+ "model.layers.3.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.3.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.3.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
414
+ "model.layers.3.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.3.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
417
+ "model.layers.30.mlp.down_u_proj.weight": "model-00002-of-00002.safetensors",
418
+ "model.layers.30.mlp.down_v_proj.weight": "model-00002-of-00002.safetensors",
419
+ "model.layers.30.mlp.gate_u_proj.weight": "model-00002-of-00002.safetensors",
420
+ "model.layers.30.mlp.gate_v_proj.weight": "model-00002-of-00002.safetensors",
421
+ "model.layers.30.mlp.up_u_proj.weight": "model-00002-of-00002.safetensors",
422
+ "model.layers.30.mlp.up_v_proj.weight": "model-00002-of-00002.safetensors",
423
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
424
+ "model.layers.30.self_attn.k_u_proj.weight": "model-00002-of-00002.safetensors",
425
+ "model.layers.30.self_attn.k_v_proj.weight": "model-00002-of-00002.safetensors",
426
+ "model.layers.30.self_attn.o_u_proj.weight": "model-00002-of-00002.safetensors",
427
+ "model.layers.30.self_attn.o_v_proj.weight": "model-00002-of-00002.safetensors",
428
+ "model.layers.30.self_attn.q_u_proj.weight": "model-00002-of-00002.safetensors",
429
+ "model.layers.30.self_attn.q_v_proj.weight": "model-00002-of-00002.safetensors",
430
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
431
+ "model.layers.30.self_attn.v_u_proj.weight": "model-00002-of-00002.safetensors",
432
+ "model.layers.30.self_attn.v_v_proj.weight": "model-00002-of-00002.safetensors",
433
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
434
+ "model.layers.31.mlp.down_u_proj.weight": "model-00002-of-00002.safetensors",
435
+ "model.layers.31.mlp.down_v_proj.weight": "model-00002-of-00002.safetensors",
436
+ "model.layers.31.mlp.gate_u_proj.weight": "model-00002-of-00002.safetensors",
437
+ "model.layers.31.mlp.gate_v_proj.weight": "model-00002-of-00002.safetensors",
438
+ "model.layers.31.mlp.up_u_proj.weight": "model-00002-of-00002.safetensors",
439
+ "model.layers.31.mlp.up_v_proj.weight": "model-00002-of-00002.safetensors",
440
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
441
+ "model.layers.31.self_attn.k_u_proj.weight": "model-00002-of-00002.safetensors",
442
+ "model.layers.31.self_attn.k_v_proj.weight": "model-00002-of-00002.safetensors",
443
+ "model.layers.31.self_attn.o_u_proj.weight": "model-00002-of-00002.safetensors",
444
+ "model.layers.31.self_attn.o_v_proj.weight": "model-00002-of-00002.safetensors",
445
+ "model.layers.31.self_attn.q_u_proj.weight": "model-00002-of-00002.safetensors",
446
+ "model.layers.31.self_attn.q_v_proj.weight": "model-00002-of-00002.safetensors",
447
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
448
+ "model.layers.31.self_attn.v_u_proj.weight": "model-00002-of-00002.safetensors",
449
+ "model.layers.31.self_attn.v_v_proj.weight": "model-00002-of-00002.safetensors",
450
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
451
+ "model.layers.4.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
452
+ "model.layers.4.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
453
+ "model.layers.4.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
454
+ "model.layers.4.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
455
+ "model.layers.4.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
456
+ "model.layers.4.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
457
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
458
+ "model.layers.4.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
459
+ "model.layers.4.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
460
+ "model.layers.4.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
461
+ "model.layers.4.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
462
+ "model.layers.4.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
463
+ "model.layers.4.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
464
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
465
+ "model.layers.4.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
466
+ "model.layers.4.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
467
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
468
+ "model.layers.5.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
469
+ "model.layers.5.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
470
+ "model.layers.5.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
471
+ "model.layers.5.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
472
+ "model.layers.5.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
473
+ "model.layers.5.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
474
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
475
+ "model.layers.5.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
476
+ "model.layers.5.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
477
+ "model.layers.5.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
478
+ "model.layers.5.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
479
+ "model.layers.5.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
480
+ "model.layers.5.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
481
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
482
+ "model.layers.5.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
483
+ "model.layers.5.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
484
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
485
+ "model.layers.6.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
486
+ "model.layers.6.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
487
+ "model.layers.6.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
488
+ "model.layers.6.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
489
+ "model.layers.6.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
490
+ "model.layers.6.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
491
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
492
+ "model.layers.6.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
493
+ "model.layers.6.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
494
+ "model.layers.6.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
495
+ "model.layers.6.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
496
+ "model.layers.6.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
497
+ "model.layers.6.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
498
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
499
+ "model.layers.6.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
500
+ "model.layers.6.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
501
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
502
+ "model.layers.7.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
503
+ "model.layers.7.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
504
+ "model.layers.7.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
505
+ "model.layers.7.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
506
+ "model.layers.7.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
507
+ "model.layers.7.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
508
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
509
+ "model.layers.7.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
510
+ "model.layers.7.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
511
+ "model.layers.7.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
512
+ "model.layers.7.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
513
+ "model.layers.7.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
514
+ "model.layers.7.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
515
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
516
+ "model.layers.7.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
517
+ "model.layers.7.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
518
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
519
+ "model.layers.8.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
520
+ "model.layers.8.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
521
+ "model.layers.8.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
522
+ "model.layers.8.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
523
+ "model.layers.8.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
524
+ "model.layers.8.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
525
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
526
+ "model.layers.8.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
527
+ "model.layers.8.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
528
+ "model.layers.8.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
529
+ "model.layers.8.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
530
+ "model.layers.8.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
531
+ "model.layers.8.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
532
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
533
+ "model.layers.8.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
534
+ "model.layers.8.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
535
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
536
+ "model.layers.9.mlp.down_u_proj.weight": "model-00001-of-00002.safetensors",
537
+ "model.layers.9.mlp.down_v_proj.weight": "model-00001-of-00002.safetensors",
538
+ "model.layers.9.mlp.gate_u_proj.weight": "model-00001-of-00002.safetensors",
539
+ "model.layers.9.mlp.gate_v_proj.weight": "model-00001-of-00002.safetensors",
540
+ "model.layers.9.mlp.up_u_proj.weight": "model-00001-of-00002.safetensors",
541
+ "model.layers.9.mlp.up_v_proj.weight": "model-00001-of-00002.safetensors",
542
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
543
+ "model.layers.9.self_attn.k_u_proj.weight": "model-00001-of-00002.safetensors",
544
+ "model.layers.9.self_attn.k_v_proj.weight": "model-00001-of-00002.safetensors",
545
+ "model.layers.9.self_attn.o_u_proj.weight": "model-00001-of-00002.safetensors",
546
+ "model.layers.9.self_attn.o_v_proj.weight": "model-00001-of-00002.safetensors",
547
+ "model.layers.9.self_attn.q_u_proj.weight": "model-00001-of-00002.safetensors",
548
+ "model.layers.9.self_attn.q_v_proj.weight": "model-00001-of-00002.safetensors",
549
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
550
+ "model.layers.9.self_attn.v_u_proj.weight": "model-00001-of-00002.safetensors",
551
+ "model.layers.9.self_attn.v_v_proj.weight": "model-00001-of-00002.safetensors",
552
+ "model.norm.weight": "model-00002-of-00002.safetensors"
553
+ }
554
+ }
modeling_svd_llama.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Optional, Tuple
3
+
4
+ import torch
5
+ import torch.utils.checkpoint
6
+ from torch import nn
7
+
8
+ from transformers.activations import ACT2FN
9
+ from transformers.utils import logging
10
+ from transformers import LlamaForCausalLM
11
+ from .config_llama import SVD_LlamaConfig
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+ _CONFIG_FOR_DOC = "SVD_LlamaConfig"
16
+
17
+ class LlamaRMSNorm(nn.Module):
18
+ def __init__(self, hidden_size, eps=1e-6):
19
+ """
20
+ LlamaRMSNorm is equivalent to T5LayerNorm
21
+ """
22
+ super().__init__()
23
+ self.weight = nn.Parameter(torch.ones(hidden_size))
24
+ self.variance_epsilon = eps
25
+
26
+ def forward(self, hidden_states):
27
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
28
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
29
+
30
+ # convert into half-precision if necessary
31
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
32
+ hidden_states = hidden_states.to(self.weight.dtype)
33
+
34
+ return self.weight * hidden_states
35
+
36
+
37
+ class LlamaRotaryEmbedding(torch.nn.Module):
38
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
39
+ super().__init__()
40
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
41
+ self.register_buffer("inv_freq", inv_freq)
42
+
43
+ # Build here to make `torch.jit.trace` work.
44
+ self.max_seq_len_cached = max_position_embeddings
45
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
46
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
47
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
48
+ emb = torch.cat((freqs, freqs), dim=-1)
49
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
50
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
51
+
52
+ def forward(self, x, seq_len=None):
53
+ # x: [bs, num_attention_heads, seq_len, head_size]
54
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
55
+ if seq_len > self.max_seq_len_cached:
56
+ self.max_seq_len_cached = seq_len
57
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
58
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
59
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
60
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
61
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
62
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
63
+ return (
64
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
65
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
66
+ )
67
+
68
+
69
+ def rotate_half(x):
70
+ """Rotates half the hidden dims of the input."""
71
+ x1 = x[..., : x.shape[-1] // 2]
72
+ x2 = x[..., x.shape[-1] // 2 :]
73
+ return torch.cat((-x2, x1), dim=-1)
74
+
75
+
76
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
77
+ gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
78
+ gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
79
+ cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
80
+ sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
81
+
82
+ q_embed = (q * cos) + (rotate_half(q) * sin)
83
+ k_embed = (k * cos) + (rotate_half(k) * sin)
84
+ return q_embed, k_embed
85
+
86
+
87
+ class SVD_LlamaMLP(nn.Module):
88
+ def __init__(
89
+ self,
90
+ config: SVD_LlamaConfig
91
+ ):
92
+ super().__init__()
93
+ self.ratio = config.ratio
94
+ low_rank = int(config.intermediate_size * config.hidden_size * self.ratio / (config.intermediate_size + config.hidden_size))
95
+ self.gate_u_proj = nn.Linear(low_rank, config.intermediate_size, bias=False)
96
+ self.gate_v_proj = nn.Linear(config.hidden_size, low_rank, bias=False)
97
+
98
+ self.down_u_proj = nn.Linear(low_rank, config.hidden_size, bias=False)
99
+ self.down_v_proj = nn.Linear(config.intermediate_size, low_rank, bias=False)
100
+
101
+ self.up_u_proj = nn.Linear(low_rank, config.intermediate_size, bias=False)
102
+ self.up_v_proj = nn.Linear(config.hidden_size, low_rank, bias=False)
103
+ self.act_fn = ACT2FN[config.hidden_act]
104
+
105
+ def forward(self, x):
106
+ up = self.up_u_proj(self.up_v_proj(x))
107
+ gate = self.gate_u_proj(self.gate_v_proj(x))
108
+ return self.down_u_proj(self.down_v_proj(self.act_fn(gate) * up))
109
+
110
+
111
+ class SVD_LlamaAttention(nn.Module):
112
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
113
+
114
+ def __init__(self, config: SVD_LlamaConfig):
115
+ super().__init__()
116
+ self.config = config
117
+ self.hidden_size = config.hidden_size
118
+ self.num_heads = config.num_attention_heads
119
+ self.head_dim = self.hidden_size // self.num_heads
120
+ self.max_position_embeddings = config.max_position_embeddings
121
+ self.ratio = config.ratio # 1 means no truncate, just keep normal attn
122
+
123
+ if (self.head_dim * self.num_heads) != self.hidden_size:
124
+ raise ValueError(
125
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
126
+ f" and `num_heads`: {self.num_heads})."
127
+ )
128
+ low_rank = int(self.hidden_size * self.ratio/2)
129
+ self.q_u_proj = nn.Linear(low_rank, self.num_heads * self.head_dim, bias=False)
130
+ self.q_v_proj = nn.Linear(self.hidden_size, low_rank, bias=False)
131
+
132
+ self.k_u_proj = nn.Linear(low_rank, self.num_heads * self.head_dim, bias=False)
133
+ self.k_v_proj = nn.Linear(self.hidden_size, low_rank, bias=False)
134
+
135
+ self.v_u_proj = nn.Linear(low_rank, self.num_heads * self.head_dim, bias=False)
136
+ self.v_v_proj = nn.Linear(self.hidden_size, low_rank, bias=False)
137
+
138
+ self.o_u_proj = nn.Linear(low_rank, self.hidden_size, bias=False)
139
+ self.o_v_proj = nn.Linear(self.num_heads * self.head_dim, low_rank, bias=False)
140
+
141
+ self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
142
+
143
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
144
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
145
+
146
+ def forward(
147
+ self,
148
+ hidden_states: torch.Tensor,
149
+ attention_mask: Optional[torch.Tensor] = None,
150
+ position_ids: Optional[torch.LongTensor] = None,
151
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
152
+ output_attentions: bool = False,
153
+ use_cache: bool = False,
154
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
155
+ bsz, q_len, _ = hidden_states.size()
156
+
157
+ query_states = self.q_u_proj(self.q_v_proj(hidden_states)).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
158
+
159
+ key_states = self.k_u_proj(self.k_v_proj(hidden_states)).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
160
+
161
+ value_states = self.v_u_proj(self.v_v_proj(hidden_states)).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
162
+
163
+ kv_seq_len = key_states.shape[-2]
164
+ if past_key_value is not None:
165
+ kv_seq_len += past_key_value[0].shape[-2]
166
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
167
+
168
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
169
+ # [bsz, nh, t, hd]
170
+
171
+ if past_key_value is not None:
172
+ # reuse k, v, self_attention
173
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
174
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
175
+
176
+ past_key_value = (key_states, value_states) if use_cache else None
177
+
178
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
179
+
180
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
181
+ raise ValueError(
182
+ f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
183
+ f" {attn_weights.size()}"
184
+ )
185
+
186
+ if attention_mask is not None:
187
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
188
+ raise ValueError(
189
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
190
+ )
191
+ attn_weights = attn_weights + attention_mask
192
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device))
193
+
194
+ # upcast attention to fp32
195
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
196
+ attn_output = torch.matmul(attn_weights, value_states)
197
+
198
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
199
+ raise ValueError(
200
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
201
+ f" {attn_output.size()}"
202
+ )
203
+
204
+ attn_output = attn_output.transpose(1, 2)
205
+ attn_output = attn_output.reshape(bsz, q_len, -1)
206
+
207
+ attn_output = self.o_u_proj(self.o_v_proj(attn_output))
208
+
209
+ if not output_attentions:
210
+ attn_weights = None
211
+
212
+ return attn_output, attn_weights, past_key_value
213
+
214
+
215
+ class SVD_LlamaForCausalLM(LlamaForCausalLM):
216
+ config_class = SVD_LlamaConfig
217
+ def __init__(self, config: SVD_LlamaConfig):
218
+ super().__init__(config)
219
+ for i in range(len(self.model.layers)):
220
+ self.model.layers[i].mlp = SVD_LlamaMLP(config=config)
221
+ self.model.layers[i].self_attn = SVD_LlamaAttention(config)