File size: 9,093 Bytes
e577d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import json
import os
import subprocess
from transformers import BertTokenizer, BertModel
import wandb

# Hyperparameters
LATENT_DIM = 128
HIDDEN_DIM = 256

# Custom dataset
class Text2ImageDataset(Dataset):
    def __init__(self, image_dir, metadata_file):
        self.image_dir = image_dir
        with open(metadata_file, 'r') as f:
            self.metadata = json.load(f)
        self.transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5, 0.5), (0.5, 0.5, 0.5, 0.5))
        ])

    def __len__(self):
        return len(self.metadata)

    def __getitem__(self, idx):
        item = self.metadata[idx]
        image_path = os.path.join(self.image_dir, item['file_name'])
        
        try:
            image = Image.open(image_path).convert('RGBA')
        except FileNotFoundError:
            print(f"Image not found: {image_path}")
            return None, None
        except Exception as e:
            print(f"Error loading image {image_path}: {e}")
            return None, None

        image = self.transform(image)
        prompt = str(item['description'])
        return image, prompt

# Text encoder
class TextEncoder(nn.Module):
    def __init__(self, hidden_size, output_size):
        super(TextEncoder, self).__init__()
        self.bert = BertModel.from_pretrained('bert-base-uncased')
        self.fc = nn.Linear(self.bert.config.hidden_size, output_size)

    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        return self.fc(outputs.last_hidden_state[:, 0, :])

# CVAE model
class CVAE(nn.Module):
    def __init__(self, text_encoder):
        super(CVAE, self).__init__()
        self.text_encoder = text_encoder

        # Encoder
        self.encoder = nn.Sequential(
            nn.Conv2d(4, 32, 3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(32, 64, 3, stride=2, padding=1),
            nn.ReLU(),
            nn.Conv2d(64, 128, 3, stride=2, padding=1),
            nn.ReLU(),
            nn.Flatten(),
            nn.Linear(128 * 4 * 4, HIDDEN_DIM)
        )

        self.fc_mu = nn.Linear(HIDDEN_DIM + HIDDEN_DIM, LATENT_DIM)
        self.fc_logvar = nn.Linear(HIDDEN_DIM + HIDDEN_DIM, LATENT_DIM)

        # Decoder
        self.decoder_input = nn.Linear(LATENT_DIM + HIDDEN_DIM, 128 * 4 * 4)
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1),
            nn.ReLU(),
            nn.ConvTranspose2d(64, 32, 3, stride=2, padding=1, output_padding=1),
            nn.ReLU(),
            nn.Conv2d(32, 4, 3, stride=1, padding=1),
            nn.Tanh()
        )

    def encode(self, x, c):
        x = self.encoder(x)
        x = torch.cat([x, c], dim=1)
        mu = self.fc_mu(x)
        logvar = self.fc_logvar(x)
        return mu, logvar

    def decode(self, z, c):
        z = torch.cat([z, c], dim=1)
        x = self.decoder_input(z)
        x = x.view(-1, 128, 4, 4)
        return self.decoder(x)

    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return mu + eps * std

    def forward(self, x, c):
        mu, logvar = self.encode(x, c)
        z = self.reparameterize(mu, logvar)
        return self.decode(z, c), mu, logvar

# Loss function
def loss_function(recon_x, x, mu, logvar):
    BCE = nn.functional.mse_loss(recon_x, x, reduction='sum')
    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    return BCE + KLD

# Updated training function
def train(model, train_loader, optimizer, device, tokenizer):
    model.train()
    train_loss = 0
    for batch_idx, (data, prompt) in enumerate(train_loader):
        data = data.to(device)
        optimizer.zero_grad()
        
        encoded_input = tokenizer(prompt, padding=True, truncation=True, return_tensors="pt")
        input_ids = encoded_input['input_ids'].to(device)
        attention_mask = encoded_input['attention_mask'].to(device)
        
        text_encoding = model.text_encoder(input_ids, attention_mask)
        
        recon_batch, mu, logvar = model(data, text_encoding)
        loss = loss_function(recon_batch, data, mu, logvar)
        loss.backward()
        train_loss += loss.item()
        optimizer.step()
        
        # Log batch-level metrics
        wandb.log({
            "batch_loss": loss.item(),
            "batch_reconstruction_loss": nn.functional.mse_loss(recon_batch, data, reduction='mean').item(),
            "batch_kl_divergence": (-0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) / data.size(0)).item()
        })
    
    avg_loss = train_loss / len(train_loader.dataset)
    return avg_loss

# Updated main function
def main():

    NUM_EPOCHS = 500
    BATCH_SIZE = 128
    LEARNING_RATE = 1e-4

    # New hyperparameters
    SAVE_INTERVAL = 25  # Save model every XXX epochs
    SAVE_INTERVAL_IMAGE = 1 # Save generated image every XXX epochs
    PROJECT_NAME = "BitRoss"
    MODEL_NAME = "BitRoss"
    SAVE_DIR = "/models/BitRoss/"

    if(os.path.exists(SAVE_DIR) == False):
        os.makedirs(SAVE_DIR)

    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

    if not os.path.exists(SAVE_DIR):
        os.makedirs(SAVE_DIR)

    DATA_DIR = "./trainingData/"
    METADATA_FILE = "./trainingData/metadata.json"
    

    # Initialize wandb
    wandb.init(project=PROJECT_NAME, config={
        "LATENT_DIM": LATENT_DIM,
        "HIDDEN_DIM": HIDDEN_DIM,
        "NUM_EPOCHS": NUM_EPOCHS,
        "BATCH_SIZE": BATCH_SIZE,
        "LEARNING_RATE": LEARNING_RATE,
        "SAVE_INTERVAL": SAVE_INTERVAL,
        "MODEL_NAME": MODEL_NAME
    })


    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    dataset = Text2ImageDataset(DATA_DIR, METADATA_FILE)
    train_loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)

    text_encoder = TextEncoder(hidden_size=HIDDEN_DIM, output_size=HIDDEN_DIM)
    model = CVAE(text_encoder).to(device)
    optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)

    # Log model architecture
    wandb.watch(model, log="all", log_freq=100)

    for epoch in range(1, NUM_EPOCHS + 1):
        train_loss = train(model, train_loader, optimizer, device, tokenizer)
        print(f'Epoch {epoch}, Loss: {train_loss:.4f}')
        
        # Log epoch-level metrics
        wandb.log({
            "epoch": epoch,
            "train_loss": train_loss,
        })

        # Generate image and save model every SAVE_INTERVAL epochs
        if epoch % SAVE_INTERVAL_IMAGE == 0:
            # Generate image
            output_image = f"{SAVE_DIR}output_epoch_{epoch}.png"
            
            # Generate image using the current model state
            from generate import generate_image
            prompt = "A blue sword made of diamond"  # You can change this prompt as needed
            generated_image = generate_image(model, prompt, device)
            generated_image.save(output_image)
            
            # Upload generated image to wandb
            wandb.log({
                "generated_image": wandb.Image(output_image, caption=f"Generated at epoch {epoch} with prompt {prompt}")
            })

        
        if epoch % SAVE_INTERVAL == 0:
            model_save_path = f"{SAVE_DIR}{MODEL_NAME}_epoch_{epoch}.pth"
            torch.save(model.state_dict(), model_save_path)
            print(f"Model saved to {model_save_path}")

        # Log sample reconstructions
        if epoch % 10 == 0:
            model.eval()
            with torch.no_grad():
                sample_data, sample_prompt = next(iter(train_loader))
                sample_data = sample_data[:4].to(device)  # Take first 4 samples
                encoded_input = tokenizer(sample_prompt[:4], padding=True, truncation=True, return_tensors="pt")
                input_ids = encoded_input['input_ids'].to(device)
                attention_mask = encoded_input['attention_mask'].to(device)
                text_encoding = model.text_encoder(input_ids, attention_mask)
                recon_batch, _, _ = model(sample_data, text_encoding)
                
                # Denormalize and convert to PIL images
                original_images = [transforms.ToPILImage()((sample_data[i] * 0.5 + 0.5).cpu()) for i in range(4)]
                reconstructed_images = [transforms.ToPILImage()((recon_batch[i] * 0.5 + 0.5).cpu()) for i in range(4)]
                
                wandb.log({
                    f"original_vs_reconstructed_{i}": [wandb.Image(original_images[i], caption=f"Original {i}"),
                                                       wandb.Image(reconstructed_images[i], caption=f"Reconstructed {i}")]
                    for i in range(4)
                })

    wandb.finish()

if __name__ == "__main__":
    main()