--- language: - or --- # Model Card for Model ID [![License: CC BY-NC-SA 4.0](https://img.shields.io/badge/License-CC_BY--NC--SA_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/) ## Model description odiagenAI-model-v0 is based on Llama-7b and finetuned with 52k Odia translated data from the open-source Stanford-Alpaca, resulting in good Odia instruction understanding and response generation capabilities. The code of Odia data generation and other detailed information can be found in our Github project repository: https://github.com/shantipriyap/OdiaGenAI. This repo contains a low-rank adapter for LLaMA-7b fit on the Stanford Alpaca dataset. ## Training hyper-parameters | Parameter | Value | | ------ | ------ | | Batch size | 128 | | Learning rate | 3e-4 | | Epochs | 2 | |Cutoff length | 256 | |Weight_decay | 0.001 | |Warmup_rate | 0.1 | |LR_scheduler | linear | |Lora r | 16 | |Lora target modules | (q_proj, k_proj, v_proj, o_proj) | Model can be easily loaded with AutoModelForCausalLM. ``` python import torch from peft import PeftModel import transformers assert ( "LlamaTokenizer" in transformers._import_structure["models.llama"] ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") BASE_MODEL = "decapoda-research/llama-7b-hf" LORA_WEIGHTS = "OdiaGenAI/odiagenAI-model-v0" model = LlamaForCausalLM.from_pretrained( BASE_MODEL, load_in_8bit=False, torch_dtype=torch.float16, device_map="auto", ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True ) def generate_prompt(instruction, input=None): if input: return f"""ନିମ୍ନରେ ଏକ ନିର୍ଦ୍ଦେଶନାମା ଯାହାକି ଏକ କାର୍ଯ୍ୟକୁ ବର୍ଣ୍ଣନା କରେ, ଏକ ଇନପୁଟ୍ ସହିତ ଯୋଡି ଯାହା ପରବର୍ତ୍ତୀ ପ୍ରସଙ୍ଗ ପ୍ରଦାନ କରେ | ଏକ ପ୍ରତିକ୍ରିୟା ଲେଖନ୍ତୁ ଯାହା ଅନୁରୋଧକୁ ସଠିକ୍ ଭାବରେ ସମାପ୍ତ କରେ | ### ନିର୍ଦ୍ଦେଶ: {instruction} ### ଇନପୁଟ୍: {input} ### ପ୍ରତିକ୍ରିୟା:""" else: return f"""ନିମ୍ନରେ ଏକ ନିର୍ଦ୍ଦେଶ ଯାହାକି ଏକ କାର୍ଯ୍ୟକୁ ବର୍ଣ୍ଣନା କରେ | ଏକ ପ୍ରତିକ୍ରିୟା ଲେଖନ୍ତୁ ଯାହା ଅନୁରୋଧକୁ ସଠିକ୍ ଭାବରେ ସମାପ୍ତ କରେ | ### ନିର୍ଦ୍ଦେଶ: {instruction} ### ପ୍ରତିକ୍ରିୟା:""" prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=0.1, top_p=0.75, top_k=40, num_beams=4, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=128, ) s = generation_output.sequences[0] output = tokenizer.decode(s) print(output.split("### Response:")[1].strip()) ``` Instructions for running it can be found at https://github.com/shantipriyap/OdiaGenAI.