--- base_model: google/paligemma-3b-pt-224 library_name: peft license: gemma tags: - generated_from_trainer model-index: - name: paligemma_vqav3 results: [] --- # Inference ``` py model_id = "Ohmmy3847/paligemma_vqav3" model = PaliGemmaForConditionalGeneration.from_pretrained("Ohmmy3847/paligemma_vqav3") processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224") prompt = "อธิบายภาพนี้เป็นภาษาไทย" raw_image = Image.open(".jpg") inputs = processor(prompt, raw_image.convert("RGB"), return_tensors="pt") output = model.generate(**inputs, max_new_tokens=20) print(processor.decode(output[0], skip_special_tokens=True)[len(prompt):]) raw_image ``` # paligemma_vqav3 This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.11.2.dev0 - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1