Upload Bitcoin_Price_Prediction_Model_(LSTM).ipynb
Browse files
Bitcoin_Price_Prediction_Model_(LSTM).ipynb
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": null,
|
20 |
+
"metadata": {
|
21 |
+
"id": "Z6OeRBuqH7cJ"
|
22 |
+
},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"#@title Step 1: Installing and Importing Necessary Libraries\n",
|
26 |
+
"# We are installing the necessary libraries in the Google Colab environment.\n",
|
27 |
+
"# yfinance: To fetch financial data from Yahoo Finance.\n",
|
28 |
+
"# tensorflow: To build and train the neural network.\n",
|
29 |
+
"# scikit-learn: For data preprocessing (normalization).\n",
|
30 |
+
"!pip install yfinance tensorflow scikit-learn pandas matplotlib -q\n",
|
31 |
+
"\n",
|
32 |
+
"import numpy as np\n",
|
33 |
+
"import pandas as pd\n",
|
34 |
+
"import matplotlib.pyplot as plt\n",
|
35 |
+
"import yfinance as yf\n",
|
36 |
+
"from sklearn.preprocessing import MinMaxScaler\n",
|
37 |
+
"from tensorflow.keras.models import Sequential\n",
|
38 |
+
"from tensorflow.keras.layers import LSTM, Dense, Dropout\n",
|
39 |
+
"import datetime\n",
|
40 |
+
"\n",
|
41 |
+
"print(\"Libraries have been successfully installed and imported!\")\n",
|
42 |
+
"\n",
|
43 |
+
"\n",
|
44 |
+
"#@title Step 2: Fetching and Visualizing Bitcoin Data\n",
|
45 |
+
"# Let's fetch the BTC-USD (Bitcoin/US Dollar) data for the last few years.\n",
|
46 |
+
"start_date = '2019-01-01'\n",
|
47 |
+
"# We set the end date to today's date.\n",
|
48 |
+
"end_date = datetime.date.today().strftime(\"%Y-%m-%d\")\n",
|
49 |
+
"\n",
|
50 |
+
"try:\n",
|
51 |
+
" btc_data = yf.download('BTC-USD', start=start_date, end=end_date)\n",
|
52 |
+
" print(f\"Bitcoin data between {start_date} and {end_date} has been fetched.\")\n",
|
53 |
+
" print(\"First 5 rows of the dataset:\")\n",
|
54 |
+
" print(btc_data.head())\n",
|
55 |
+
"\n",
|
56 |
+
" # Let's plot the 'Close' prices of the dataset in a graph.\n",
|
57 |
+
" plt.figure(figsize=(14, 7))\n",
|
58 |
+
" plt.style.use('seaborn-v0_8-darkgrid')\n",
|
59 |
+
" plt.plot(btc_data['Close'], color='orange')\n",
|
60 |
+
" plt.title('Bitcoin Closing Prices (BTC-USD)', fontsize=16)\n",
|
61 |
+
" plt.xlabel('Date', fontsize=12)\n",
|
62 |
+
" plt.ylabel('Price (USD)', fontsize=12)\n",
|
63 |
+
" plt.legend(['Closing Price'])\n",
|
64 |
+
" plt.show()\n",
|
65 |
+
"\n",
|
66 |
+
"except Exception as e:\n",
|
67 |
+
" print(f\"An error occurred while fetching data: {e}\")\n",
|
68 |
+
"\n",
|
69 |
+
"\n",
|
70 |
+
"#@title Step 3: Data Preprocessing\n",
|
71 |
+
"# We are preparing the data to train our model.\n",
|
72 |
+
"\n",
|
73 |
+
"# We will only use the 'Close' column.\n",
|
74 |
+
"close_data = btc_data['Close'].values.reshape(-1, 1)\n",
|
75 |
+
"\n",
|
76 |
+
"# We are scaling the data between 0 and 1 (Normalization).\n",
|
77 |
+
"# Neural networks work more efficiently with data in this range.\n",
|
78 |
+
"scaler = MinMaxScaler(feature_range=(0, 1))\n",
|
79 |
+
"scaled_data = scaler.fit_transform(close_data)\n",
|
80 |
+
"\n",
|
81 |
+
"# We are splitting the dataset: 80% for training, 20% for testing.\n",
|
82 |
+
"training_data_len = int(np.ceil(len(scaled_data) * 0.8))\n",
|
83 |
+
"\n",
|
84 |
+
"# Let's create the training data.\n",
|
85 |
+
"train_data = scaled_data[0:int(training_data_len), :]\n",
|
86 |
+
"\n",
|
87 |
+
"# Let's prepare the x_train and y_train sets for training.\n",
|
88 |
+
"# The model will predict the next day's price by looking at the past 60 days' prices.\n",
|
89 |
+
"prediction_days = 60\n",
|
90 |
+
"x_train = []\n",
|
91 |
+
"y_train = []\n",
|
92 |
+
"\n",
|
93 |
+
"for i in range(prediction_days, len(train_data)):\n",
|
94 |
+
" x_train.append(train_data[i-prediction_days:i, 0])\n",
|
95 |
+
" y_train.append(train_data[i, 0])\n",
|
96 |
+
"\n",
|
97 |
+
"# Converting the lists to numpy arrays.\n",
|
98 |
+
"x_train, y_train = np.array(x_train), np.array(y_train)\n",
|
99 |
+
"\n",
|
100 |
+
"# Reshaping the data into a 3D format suitable for the LSTM model: [number of samples, time steps, number of features]\n",
|
101 |
+
"x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))\n",
|
102 |
+
"print(f\"Training data prepared. x_train shape: {x_train.shape}\")\n",
|
103 |
+
"\n",
|
104 |
+
"\n",
|
105 |
+
"#@title Step 4: Building the LSTM Model\n",
|
106 |
+
"# We are designing our neural network model using Keras.\n",
|
107 |
+
"\n",
|
108 |
+
"model = Sequential()\n",
|
109 |
+
"\n",
|
110 |
+
"# Layer 1: LSTM layer with 50 neurons. `return_sequences=True` because we will send data to the next LSTM layer.\n",
|
111 |
+
"model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1)))\n",
|
112 |
+
"model.add(Dropout(0.2)) # We are deactivating 20% of the neurons to prevent overfitting.\n",
|
113 |
+
"\n",
|
114 |
+
"# Layer 2: LSTM layer with 50 neurons.\n",
|
115 |
+
"model.add(LSTM(units=50, return_sequences=False))\n",
|
116 |
+
"model.add(Dropout(0.2))\n",
|
117 |
+
"\n",
|
118 |
+
"# Output Layer: Consists of 1 neuron as we will predict a single value (the price).\n",
|
119 |
+
"model.add(Dense(units=1))\n",
|
120 |
+
"\n",
|
121 |
+
"# Compiling the model. 'adam' is a popular optimizer. 'mean_squared_error' is the loss function.\n",
|
122 |
+
"model.compile(optimizer='adam', loss='mean_squared_error')\n",
|
123 |
+
"\n",
|
124 |
+
"# Let's see the model's architecture.\n",
|
125 |
+
"model.summary()\n",
|
126 |
+
"\n",
|
127 |
+
"\n",
|
128 |
+
"#@title Step 5: Training the Model\n",
|
129 |
+
"# We are training the model with the prepared data.\n",
|
130 |
+
"# epochs: The number of times the model will process the entire dataset.\n",
|
131 |
+
"# batch_size: The number of data samples the model will see in each iteration.\n",
|
132 |
+
"print(\"Starting model training...\")\n",
|
133 |
+
"history = model.fit(x_train, y_train, batch_size=32, epochs=25)\n",
|
134 |
+
"print(\"Model training completed!\")\n",
|
135 |
+
"\n",
|
136 |
+
"\n",
|
137 |
+
"#@title Step 6: Testing the Model and Evaluating Results\n",
|
138 |
+
"# Let's create the test data.\n",
|
139 |
+
"test_data = scaled_data[training_data_len - prediction_days:, :]\n",
|
140 |
+
"\n",
|
141 |
+
"# Let's prepare the x_test and y_test sets.\n",
|
142 |
+
"x_test = []\n",
|
143 |
+
"y_test = close_data[training_data_len:, :] # y_test is the original (unscaled) data.\n",
|
144 |
+
"\n",
|
145 |
+
"for i in range(prediction_days, len(test_data)):\n",
|
146 |
+
" x_test.append(test_data[i-prediction_days:i, 0])\n",
|
147 |
+
"\n",
|
148 |
+
"x_test = np.array(x_test)\n",
|
149 |
+
"x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))\n",
|
150 |
+
"\n",
|
151 |
+
"# Let's make predictions on the test data with the model.\n",
|
152 |
+
"predictions = model.predict(x_test)\n",
|
153 |
+
"\n",
|
154 |
+
"# Let's scale the predictions back to the original price (from 0-1 range to USD).\n",
|
155 |
+
"predictions = scaler.inverse_transform(predictions)\n",
|
156 |
+
"\n",
|
157 |
+
"# Let's calculate RMSE (Root Mean Squared Error) to measure the model's performance.\n",
|
158 |
+
"rmse = np.sqrt(np.mean(((predictions - y_test) ** 2)))\n",
|
159 |
+
"print(f'\\nModel Error Rate on Test Data (RMSE): {rmse:.2f} USD')\n",
|
160 |
+
"\n",
|
161 |
+
"# Let's show the actual and predicted prices on the same graph.\n",
|
162 |
+
"train = btc_data[:training_data_len]\n",
|
163 |
+
"valid = btc_data[training_data_len:].copy() # Using .copy() to avoid SettingWithCopyWarning.\n",
|
164 |
+
"valid.loc[:, 'Predictions'] = predictions\n",
|
165 |
+
"\n",
|
166 |
+
"plt.figure(figsize=(16, 8))\n",
|
167 |
+
"plt.title('Model Predictions vs Actual Prices', fontsize=16)\n",
|
168 |
+
"plt.xlabel('Date', fontsize=12)\n",
|
169 |
+
"plt.ylabel('Closing Price (USD)', fontsize=12)\n",
|
170 |
+
"plt.plot(train['Close'], color='blue', alpha=0.6)\n",
|
171 |
+
"plt.plot(valid['Close'], color='green')\n",
|
172 |
+
"plt.plot(valid['Predictions'], color='red', linestyle='--')\n",
|
173 |
+
"plt.legend(['Training Data', 'Actual Price', 'Predicted Price'], loc='upper left')\n",
|
174 |
+
"plt.show()\n",
|
175 |
+
"\n",
|
176 |
+
"# Let's take a closer look at the last 15 days of predictions.\n",
|
177 |
+
"print(\"\\nLast 15 Days of Actual and Predicted Prices:\")\n",
|
178 |
+
"print(valid[['Close', 'Predictions']].tail(15))\n",
|
179 |
+
"\n",
|
180 |
+
"\n",
|
181 |
+
"#@title Step 7: Using the Model to Predict the Future\n",
|
182 |
+
"\n",
|
183 |
+
"# Get the last 60 days of data\n",
|
184 |
+
"last_60_days = scaled_data[-prediction_days:]\n",
|
185 |
+
"X_predict = np.reshape(last_60_days, (1, prediction_days, 1))\n",
|
186 |
+
"\n",
|
187 |
+
"# Make a guess\n",
|
188 |
+
"predicted_price_scaled = model.predict(X_predict)\n",
|
189 |
+
"predicted_price = scaler.inverse_transform(predicted_price_scaled)\n",
|
190 |
+
"\n",
|
191 |
+
"# Date information\n",
|
192 |
+
"tomorrow = datetime.date.today() + datetime.timedelta(days=1)\n",
|
193 |
+
"\n",
|
194 |
+
"# Convert with float() to avoid errors\n",
|
195 |
+
"last_row = btc_data.tail(1)\n",
|
196 |
+
"last_index = last_row.index[0]\n",
|
197 |
+
"last_actual_price = float(last_row['Close'].iloc[0])\n",
|
198 |
+
"\n",
|
199 |
+
"# Print results\n",
|
200 |
+
"print(\"\\n\" + \"=\"*50)\n",
|
201 |
+
"print(\"FUTURE PREDICTION\")\n",
|
202 |
+
"print(\"=\"*50)\n",
|
203 |
+
"print(f\"Last closing price({last_index.strftime('%Y-%m-%d')}): {last_actual_price:.2f} USD\")\n",
|
204 |
+
"print(f\"The model {tomorrow.strftime('%Y-%m-%d')} Bitcoin price prediction for: {float(predicted_price[0][0]):.2f} USD\")\n",
|
205 |
+
"print(\"=\"*50)\n",
|
206 |
+
"print(\"\\nWARNING: This model is for educational purposes only and does not constitute financial advice.\")\n",
|
207 |
+
"\n",
|
208 |
+
"\n"
|
209 |
+
]
|
210 |
+
}
|
211 |
+
]
|
212 |
+
}
|