OldCrazyCoder commited on
Commit
c7e1fe3
·
1 Parent(s): 9cd8dcd

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.19 +/- 0.08
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a337c04d6f9883483575112962ee4078c7814df7af5da2ea3d411c39f98be23
3
+ size 106831
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7807cbec39a0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7807cbebe8c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1692892646420549108,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyEqGPgvBaLumNOI+dor/vd2Fm778o0++B3ZSP+8rpr8smB2/+M3QvfBw5T7d+1++lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGCGRv90hWD9Wcr8/OV8kv/SiEr4SZKq/NuPuPvfyrL+iTZW+TB1Yv5+7Sj5fuKO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADISoY+C8Fou6Y04j7te/s+FzObu2KOyD52iv+93YWbvvyjT77f1ti/I1WsvsY5qr8HdlI/7yumvyyYHb8e6SA/ZKxbvzjUDb/4zdC98HDlPt37X75V9O+/warPP9mSsb+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.2622893 -0.00355155 0.44180793]\n [-0.12477581 -0.30375567 -0.20277399]\n [ 0.82211345 -1.2982157 -0.6156032 ]\n [-0.10195535 0.44812727 -0.21873422]]",
34
+ "desired_goal": "[[-1.1338224 0.8442667 1.4956768 ]\n [-0.642078 -0.14319974 -1.3311789 ]\n [ 0.46657723 -1.3511647 -0.29160792]\n [-0.84419703 0.19798134 -1.279064 ]]",
35
+ "observation": "[[ 0.2622893 -0.00355155 0.44180793 0.49117985 -0.00473631 0.3917113 ]\n [-0.12477581 -0.30375567 -0.20277399 -1.6940573 -0.33658704 -1.3298881 ]\n [ 0.82211345 -1.2982157 -0.6156032 0.6285571 -0.8580992 -0.55401945]\n [-0.10195535 0.44812727 -0.21873422 -1.8746439 1.6223985 -1.3872939 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANdLsvZxseD0V58E9lTeSPW/OtL3QVmw9ESGovWsjq7xOpXk+Gay4vPUXsjtEmpc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.11563531 0.06065045 0.09467904]\n [ 0.07139508 -0.08828437 0.05769998]\n [-0.08209432 -0.02089091 0.24379465]\n [-0.022543 0.00543498 0.29609883]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9TGyX2M85mMAWyUSwOMAXSUR0Cmcs668QI2dX2UKGgGR7/QTot+TeO5aAdLA2gIR0Cmcm2joIOZdX2UKGgGR7+jch1Tzd1uaAdLAWgIR0CmctXd0q6OdX2UKGgGR7/TBCD28IzFaAdLA2gIR0CmchAL7XQMdX2UKGgGR7+kV+I/JNj9aAdLAWgIR0CmchSxzJZGdX2UKGgGR7/KQ176YVqOaAdLA2gIR0Cmca7JGOMmdX2UKGgGR7/KPz4DcM3IaAdLA2gIR0Cmcn5U1hsqdX2UKGgGR7/Ro4dZJTVEaAdLA2gIR0CmcuP3i704dX2UKGgGR7+18qnWJ79iaAdLAmgIR0CmcocD0UXYdX2UKGgGR7/Sv60pmVZ+aAdLA2gIR0CmciJr1uiwdX2UKGgGR7/O7QswtapxaAdLA2gIR0CmcbxiXpnpdX2UKGgGR7/SD0Dlo11oaAdLA2gIR0CmcvPYe1a4dX2UKGgGR7+5nYg7o0Q9aAdLAmgIR0CmcpLE1l5GdX2UKGgGR7/Bn6Eal1r7aAdLAmgIR0CmccgkC3gDdX2UKGgGR7/GiFCb+cYqaAdLA2gIR0CmcjMWoFV1dX2UKGgGR7+9aOgg5imVaAdLAmgIR0CmcpyuhbnpdX2UKGgGR7/NVo6CDmKZaAdLA2gIR0CmcwJ48loldX2UKGgGR7/SWnCO3lS1aAdLA2gIR0CmcdZvUBn0dX2UKGgGR7/RowEhaC+UaAdLA2gIR0CmckO6/ZdwdX2UKGgGR7/C+UQkHD77aAdLAmgIR0Cmcw4mkWRBdX2UKGgGR7/I0G/vfCQ+aAdLA2gIR0Cmcq0Jng5zdX2UKGgGR7+zxI8QqZtvaAdLAmgIR0CmceJC0F8pdX2UKGgGR7/QML4N7SiNaAdLA2gIR0CmcxyL61stdX2UKGgGR7/RkZ75VOsUaAdLA2gIR0CmcruPFNtZdX2UKGgGR7/Z3uuzQeFMaAdLBGgIR0Cmclb9ycTbdX2UKGgGR7/WZdOZb6gvaAdLBGgIR0CmcfhnzxwydX2UKGgGR7+1OafBeokzaAdLAmgIR0Cmcyj7ZWaMdX2UKGgGR7++2phnanJlaAdLAmgIR0CmcmNWMju8dX2UKGgGR7+n8/D+BH09aAdLAWgIR0Cmcf1MmF8HdX2UKGgGR7/QhGYrrgO0aAdLBGgIR0CmctKxcE/0dX2UKGgGR7/AKOT7l7tzaAdLAmgIR0Cmcm4eT3ZgdX2UKGgGR7/KExIre67NaAdLA2gIR0CmczjYAbQ1dX2UKGgGR7/SppN9H+ZPaAdLA2gIR0CmcgzIeYD1dX2UKGgGR7+4oYvWYnfEaAdLAmgIR0Cmct6ClJpWdX2UKGgGR7+8fwI+nqFAaAdLAmgIR0Cmcnni3ocJdX2UKGgGR7+gz+FUQ04zaAdLAWgIR0CmcuLxqfvndX2UKGgGR7+kSK3uuzQeaAdLAWgIR0Cmcn5Z0SyudX2UKGgGR7/TlKbrkbPyaAdLA2gIR0Cmc0lMRHwxdX2UKGgGR7+F4X40uUUxaAdLAWgIR0CmcujF6zE8dX2UKGgGR7/PghKUVzp5aAdLA2gIR0Cmco3xWkrPdX2UKGgGR7/d3XqZ+hGpaAdLBWgIR0Cmcif47A+IdX2UKGgGR7/WTuOS4e90aAdLA2gIR0Cmc1tnXd0rdX2UKGgGR7/OkOZssQNDaAdLA2gIR0Cmcvpgb6xgdX2UKGgGR7+K24NI9TxYaAdLAWgIR0Cmci+lbeMydX2UKGgGR7/ICDmKZUkwaAdLA2gIR0Cmcp62OQyRdX2UKGgGR7+14VymygPFaAdLAmgIR0Cmcji2MKkVdX2UKGgGR7/MzEaVD8cdaAdLA2gIR0CmcwiFCb+cdX2UKGgGR7/hYvvjOs1baAdLBWgIR0Cmc3aEzwc6dX2UKGgGR7/U0XP7el9CaAdLA2gIR0CmcrD9fkWAdX2UKGgGR7/WNGmUGFBZaAdLA2gIR0CmcksUIsy0dX2UKGgGR7+ksvqTr3TNaAdLAWgIR0Cmc3wF9roGdX2UKGgGR7/V5WBBiTdMaAdLBGgIR0CmcyAVXV9XdX2UKGgGR7+/khib2Dg7aAdLAmgIR0CmcruNxVABdX2UKGgGR7/Mbd8Aq/dqaAdLA2gIR0CmclonrpqzdX2UKGgGR7/XOqvNeMQ3aAdLA2gIR0Cmc4qzzErHdX2UKGgGR7/RixmkFfReaAdLA2gIR0CmcsvRZ2ZBdX2UKGgGR7/ezmwJPZZkaAdLBGgIR0CmczTmOlwcdX2UKGgGR7/QNiYsunMuaAdLA2gIR0Cmcmob4rSWdX2UKGgGR7/JZWaMJhOQaAdLA2gIR0Cmc5rPdEb6dX2UKGgGR7+2jmCAc1fmaAdLAmgIR0CmctTGgi/xdX2UKGgGR7+mJSBK+SKWaAdLAWgIR0Cmcm7FbVz7dX2UKGgGR7+/jJdSl3yJaAdLAmgIR0Cmc6O+7Dl6dX2UKGgGR7+6WD6FdszmaAdLAmgIR0Cmct3Dm8ujdX2UKGgGR7+1Xo1UEPlNaAdLAmgIR0Cmcne+23KCdX2UKGgGR7/XuE25xzaLaAdLBGgIR0Cmc0sd1dPddX2UKGgGR7+6/tY0VJtjaAdLAmgIR0Cmc7D+rELqdX2UKGgGR7/ChvitJWeZaAdLAmgIR0CmcuseXAuadX2UKGgGR7+QmNR3u/lAaAdLAWgIR0Cmc7V2icoZdX2UKGgGR7+50/4ZdfLLaAdLAmgIR0Cmc1RmbsnidX2UKGgGR7/F0mMOwxFiaAdLA2gIR0CmconkDIRzdX2UKGgGR7+/pY9xIatLaAdLAmgIR0Cmc110Lc9GdX2UKGgGR7/EqPwNLDhtaAdLA2gIR0CmcvjhUBGQdX2UKGgGR7/Ix3V09yLiaAdLA2gIR0Cmc8WjO9nLdX2UKGgGR7/SdVNpM6BAaAdLA2gIR0CmcpnVXmvGdX2UKGgGR7+2rXDm8ujAaAdLAmgIR0Cmc8961LJ0dX2UKGgGR7/RTEzfrKNiaAdLA2gIR0Cmc25wXIludX2UKGgGR7/K9B8hLXcyaAdLA2gIR0CmcwnkcS5BdX2UKGgGR7+4K8cuJ1q4aAdLAmgIR0Cmc9sabWmQdX2UKGgGR7/QbgCOmzjWaAdLA2gIR0Cmc4LHMlkZdX2UKGgGR7/JGAkLQXyiaAdLA2gIR0Cmcx4qgAZLdX2UKGgGR7/R1ct5D7ZWaAdLBWgIR0Cmcrhk7OmjdX2UKGgGR7+0cHWz4UN8aAdLAmgIR0Cmc+j8+A3DdX2UKGgGR7+9sYVIqbz9aAdLAmgIR0Cmc4wyAQQMdX2UKGgGR7/KsPrfLs8gaAdLA2gIR0CmcyzQu27WdX2UKGgGR7/TBCD28IzFaAdLA2gIR0Cmcsbb1yvLdX2UKGgGR7/RpA2Q4jrzaAdLA2gIR0Cmc/eaKDTSdX2UKGgGR7/OzN2TxG2DaAdLA2gIR0Cmc50T+NtJdX2UKGgGR7+4uOCGvfTDaAdLAmgIR0CmctJosZpBdX2UKGgGR7/JFEy+HrQgaAdLA2gIR0Cmcz0L+glGdX2UKGgGR7/TrXDm8ujAaAdLA2gIR0CmdAfF72L6dX2UKGgGR7/RJd0JWvKVaAdLA2gIR0Cmc6u6NEPUdX2UKGgGR7/RITXarWAgaAdLA2gIR0Cmc0uM+/xldX2UKGgGR7/XHj6vaDf4aAdLBGgIR0CmcuWaMJhOdX2UKGgGR7/OW9DhLoOhaAdLA2gIR0Cmc7tg0CRwdX2UKGgGR7/Bp2U0Nz8xaAdLAmgIR0CmcvCwjdHldX2UKGgGR7/XfKp1ie/YaAdLBWgIR0CmdCGMOwxGdX2UKGgGR7/IKekHlfZ3aAdLA2gIR0Cmc1vCEYfodX2UKGgGR7+76uW8h9sraAdLAmgIR0Cmc8VmJ3xGdX2UKGgGR7+6PdVNpM6BaAdLAmgIR0CmcvrZzxPPdX2UKGgGR7+0zyjHn2ZiaAdLAmgIR0CmdCtz8xbjdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a7f500b9b3afb5ac03894bb350af1b57f645a420be6a7cd60a3e02fb5ccea98
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0c6ed80bfdfefda39e0a613f51bac6cd86be49d22bca19be3ab992a153f05d3
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7807cbec39a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7807cbebe8c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692892646420549108, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyEqGPgvBaLumNOI+dor/vd2Fm778o0++B3ZSP+8rpr8smB2/+M3QvfBw5T7d+1++lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGCGRv90hWD9Wcr8/OV8kv/SiEr4SZKq/NuPuPvfyrL+iTZW+TB1Yv5+7Sj5fuKO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADISoY+C8Fou6Y04j7te/s+FzObu2KOyD52iv+93YWbvvyjT77f1ti/I1WsvsY5qr8HdlI/7yumvyyYHb8e6SA/ZKxbvzjUDb/4zdC98HDlPt37X75V9O+/warPP9mSsb+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.2622893 -0.00355155 0.44180793]\n [-0.12477581 -0.30375567 -0.20277399]\n [ 0.82211345 -1.2982157 -0.6156032 ]\n [-0.10195535 0.44812727 -0.21873422]]", "desired_goal": "[[-1.1338224 0.8442667 1.4956768 ]\n [-0.642078 -0.14319974 -1.3311789 ]\n [ 0.46657723 -1.3511647 -0.29160792]\n [-0.84419703 0.19798134 -1.279064 ]]", "observation": "[[ 0.2622893 -0.00355155 0.44180793 0.49117985 -0.00473631 0.3917113 ]\n [-0.12477581 -0.30375567 -0.20277399 -1.6940573 -0.33658704 -1.3298881 ]\n [ 0.82211345 -1.2982157 -0.6156032 0.6285571 -0.8580992 -0.55401945]\n [-0.10195535 0.44812727 -0.21873422 -1.8746439 1.6223985 -1.3872939 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANdLsvZxseD0V58E9lTeSPW/OtL3QVmw9ESGovWsjq7xOpXk+Gay4vPUXsjtEmpc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11563531 0.06065045 0.09467904]\n [ 0.07139508 -0.08828437 0.05769998]\n [-0.08209432 -0.02089091 0.24379465]\n [-0.022543 0.00543498 0.29609883]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9TGyX2M85mMAWyUSwOMAXSUR0Cmcs668QI2dX2UKGgGR7/QTot+TeO5aAdLA2gIR0Cmcm2joIOZdX2UKGgGR7+jch1Tzd1uaAdLAWgIR0CmctXd0q6OdX2UKGgGR7/TBCD28IzFaAdLA2gIR0CmchAL7XQMdX2UKGgGR7+kV+I/JNj9aAdLAWgIR0CmchSxzJZGdX2UKGgGR7/KQ176YVqOaAdLA2gIR0Cmca7JGOMmdX2UKGgGR7/KPz4DcM3IaAdLA2gIR0Cmcn5U1hsqdX2UKGgGR7/Ro4dZJTVEaAdLA2gIR0CmcuP3i704dX2UKGgGR7+18qnWJ79iaAdLAmgIR0CmcocD0UXYdX2UKGgGR7/Sv60pmVZ+aAdLA2gIR0CmciJr1uiwdX2UKGgGR7/O7QswtapxaAdLA2gIR0CmcbxiXpnpdX2UKGgGR7/SD0Dlo11oaAdLA2gIR0CmcvPYe1a4dX2UKGgGR7+5nYg7o0Q9aAdLAmgIR0CmcpLE1l5GdX2UKGgGR7/Bn6Eal1r7aAdLAmgIR0CmccgkC3gDdX2UKGgGR7/GiFCb+cYqaAdLA2gIR0CmcjMWoFV1dX2UKGgGR7+9aOgg5imVaAdLAmgIR0CmcpyuhbnpdX2UKGgGR7/NVo6CDmKZaAdLA2gIR0CmcwJ48loldX2UKGgGR7/SWnCO3lS1aAdLA2gIR0CmcdZvUBn0dX2UKGgGR7/RowEhaC+UaAdLA2gIR0CmckO6/ZdwdX2UKGgGR7/C+UQkHD77aAdLAmgIR0Cmcw4mkWRBdX2UKGgGR7/I0G/vfCQ+aAdLA2gIR0Cmcq0Jng5zdX2UKGgGR7+zxI8QqZtvaAdLAmgIR0CmceJC0F8pdX2UKGgGR7/QML4N7SiNaAdLA2gIR0CmcxyL61stdX2UKGgGR7/RkZ75VOsUaAdLA2gIR0CmcruPFNtZdX2UKGgGR7/Z3uuzQeFMaAdLBGgIR0Cmclb9ycTbdX2UKGgGR7/WZdOZb6gvaAdLBGgIR0CmcfhnzxwydX2UKGgGR7+1OafBeokzaAdLAmgIR0Cmcyj7ZWaMdX2UKGgGR7++2phnanJlaAdLAmgIR0CmcmNWMju8dX2UKGgGR7+n8/D+BH09aAdLAWgIR0Cmcf1MmF8HdX2UKGgGR7/QhGYrrgO0aAdLBGgIR0CmctKxcE/0dX2UKGgGR7/AKOT7l7tzaAdLAmgIR0Cmcm4eT3ZgdX2UKGgGR7/KExIre67NaAdLA2gIR0CmczjYAbQ1dX2UKGgGR7/SppN9H+ZPaAdLA2gIR0CmcgzIeYD1dX2UKGgGR7+4oYvWYnfEaAdLAmgIR0Cmct6ClJpWdX2UKGgGR7+8fwI+nqFAaAdLAmgIR0Cmcnni3ocJdX2UKGgGR7+gz+FUQ04zaAdLAWgIR0CmcuLxqfvndX2UKGgGR7+kSK3uuzQeaAdLAWgIR0Cmcn5Z0SyudX2UKGgGR7/TlKbrkbPyaAdLA2gIR0Cmc0lMRHwxdX2UKGgGR7+F4X40uUUxaAdLAWgIR0CmcujF6zE8dX2UKGgGR7/PghKUVzp5aAdLA2gIR0Cmco3xWkrPdX2UKGgGR7/d3XqZ+hGpaAdLBWgIR0Cmcif47A+IdX2UKGgGR7/WTuOS4e90aAdLA2gIR0Cmc1tnXd0rdX2UKGgGR7/OkOZssQNDaAdLA2gIR0Cmcvpgb6xgdX2UKGgGR7+K24NI9TxYaAdLAWgIR0Cmci+lbeMydX2UKGgGR7/ICDmKZUkwaAdLA2gIR0Cmcp62OQyRdX2UKGgGR7+14VymygPFaAdLAmgIR0Cmcji2MKkVdX2UKGgGR7/MzEaVD8cdaAdLA2gIR0CmcwiFCb+cdX2UKGgGR7/hYvvjOs1baAdLBWgIR0Cmc3aEzwc6dX2UKGgGR7/U0XP7el9CaAdLA2gIR0CmcrD9fkWAdX2UKGgGR7/WNGmUGFBZaAdLA2gIR0CmcksUIsy0dX2UKGgGR7+ksvqTr3TNaAdLAWgIR0Cmc3wF9roGdX2UKGgGR7/V5WBBiTdMaAdLBGgIR0CmcyAVXV9XdX2UKGgGR7+/khib2Dg7aAdLAmgIR0CmcruNxVABdX2UKGgGR7/Mbd8Aq/dqaAdLA2gIR0CmclonrpqzdX2UKGgGR7/XOqvNeMQ3aAdLA2gIR0Cmc4qzzErHdX2UKGgGR7/RixmkFfReaAdLA2gIR0CmcsvRZ2ZBdX2UKGgGR7/ezmwJPZZkaAdLBGgIR0CmczTmOlwcdX2UKGgGR7/QNiYsunMuaAdLA2gIR0Cmcmob4rSWdX2UKGgGR7/JZWaMJhOQaAdLA2gIR0Cmc5rPdEb6dX2UKGgGR7+2jmCAc1fmaAdLAmgIR0CmctTGgi/xdX2UKGgGR7+mJSBK+SKWaAdLAWgIR0Cmcm7FbVz7dX2UKGgGR7+/jJdSl3yJaAdLAmgIR0Cmc6O+7Dl6dX2UKGgGR7+6WD6FdszmaAdLAmgIR0Cmct3Dm8ujdX2UKGgGR7+1Xo1UEPlNaAdLAmgIR0Cmcne+23KCdX2UKGgGR7/XuE25xzaLaAdLBGgIR0Cmc0sd1dPddX2UKGgGR7+6/tY0VJtjaAdLAmgIR0Cmc7D+rELqdX2UKGgGR7/ChvitJWeZaAdLAmgIR0CmcuseXAuadX2UKGgGR7+QmNR3u/lAaAdLAWgIR0Cmc7V2icoZdX2UKGgGR7+50/4ZdfLLaAdLAmgIR0Cmc1RmbsnidX2UKGgGR7/F0mMOwxFiaAdLA2gIR0CmconkDIRzdX2UKGgGR7+/pY9xIatLaAdLAmgIR0Cmc110Lc9GdX2UKGgGR7/EqPwNLDhtaAdLA2gIR0CmcvjhUBGQdX2UKGgGR7/Ix3V09yLiaAdLA2gIR0Cmc8WjO9nLdX2UKGgGR7/SdVNpM6BAaAdLA2gIR0CmcpnVXmvGdX2UKGgGR7+2rXDm8ujAaAdLAmgIR0Cmc8961LJ0dX2UKGgGR7/RTEzfrKNiaAdLA2gIR0Cmc25wXIludX2UKGgGR7/K9B8hLXcyaAdLA2gIR0CmcwnkcS5BdX2UKGgGR7+4K8cuJ1q4aAdLAmgIR0Cmc9sabWmQdX2UKGgGR7/QbgCOmzjWaAdLA2gIR0Cmc4LHMlkZdX2UKGgGR7/JGAkLQXyiaAdLA2gIR0Cmcx4qgAZLdX2UKGgGR7/R1ct5D7ZWaAdLBWgIR0Cmcrhk7OmjdX2UKGgGR7+0cHWz4UN8aAdLAmgIR0Cmc+j8+A3DdX2UKGgGR7+9sYVIqbz9aAdLAmgIR0Cmc4wyAQQMdX2UKGgGR7/KsPrfLs8gaAdLA2gIR0CmcyzQu27WdX2UKGgGR7/TBCD28IzFaAdLA2gIR0Cmcsbb1yvLdX2UKGgGR7/RpA2Q4jrzaAdLA2gIR0Cmc/eaKDTSdX2UKGgGR7/OzN2TxG2DaAdLA2gIR0Cmc50T+NtJdX2UKGgGR7+4uOCGvfTDaAdLAmgIR0CmctJosZpBdX2UKGgGR7/JFEy+HrQgaAdLA2gIR0Cmcz0L+glGdX2UKGgGR7/TrXDm8ujAaAdLA2gIR0CmdAfF72L6dX2UKGgGR7/RJd0JWvKVaAdLA2gIR0Cmc6u6NEPUdX2UKGgGR7/RITXarWAgaAdLA2gIR0Cmc0uM+/xldX2UKGgGR7/XHj6vaDf4aAdLBGgIR0CmcuWaMJhOdX2UKGgGR7/OW9DhLoOhaAdLA2gIR0Cmc7tg0CRwdX2UKGgGR7/Bp2U0Nz8xaAdLAmgIR0CmcvCwjdHldX2UKGgGR7/XfKp1ie/YaAdLBWgIR0CmdCGMOwxGdX2UKGgGR7/IKekHlfZ3aAdLA2gIR0Cmc1vCEYfodX2UKGgGR7+76uW8h9sraAdLAmgIR0Cmc8VmJ3xGdX2UKGgGR7+6PdVNpM6BaAdLAmgIR0CmcvrZzxPPdX2UKGgGR7+0zyjHn2ZiaAdLAmgIR0CmdCtz8xbjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (702 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.19027330223470926, "std_reward": 0.08119218978078868, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-24T16:46:06.532367"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:392b16e847df5d0b7b0f2d52761babddef68740fd83c60580ab3e81ce68af65c
3
+ size 2623