File size: 3,254 Bytes
42bc75a c038553 42bc75a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9332258064516129
- task:
type: text-classification
name: Text Classification
dataset:
name: clinc_oos
type: clinc_oos
config: small
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.8587272727272727
verified: true
- name: Precision Macro
type: precision
value: 0.8619245385984416
verified: true
- name: Precision Micro
type: precision
value: 0.8587272727272727
verified: true
- name: Precision Weighted
type: precision
value: 0.8797945801452213
verified: true
- name: Recall Macro
type: recall
value: 0.9359690949227375
verified: true
- name: Recall Micro
type: recall
value: 0.8587272727272727
verified: true
- name: Recall Weighted
type: recall
value: 0.8587272727272727
verified: true
- name: F1 Macro
type: f1
value: 0.8922503214655346
verified: true
- name: F1 Micro
type: f1
value: 0.8587272727272727
verified: true
- name: F1 Weighted
type: f1
value: 0.8506829426037475
verified: true
- name: loss
type: loss
value: 0.9798759818077087
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1259
- Accuracy: 0.9332
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 318 | 0.5952 | 0.7355 |
| 0.7663 | 2.0 | 636 | 0.3130 | 0.8742 |
| 0.7663 | 3.0 | 954 | 0.2024 | 0.9206 |
| 0.3043 | 4.0 | 1272 | 0.1590 | 0.9235 |
| 0.181 | 5.0 | 1590 | 0.1378 | 0.9303 |
| 0.181 | 6.0 | 1908 | 0.1287 | 0.9329 |
| 0.1468 | 7.0 | 2226 | 0.1259 | 0.9332 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
|