File size: 41,984 Bytes
04069f6
387e130
 
04069f6
 
e9373e6
04069f6
 
 
 
 
 
 
 
387e130
 
04069f6
 
 
 
 
 
 
 
 
 
 
 
387e130
04069f6
 
 
 
 
 
 
 
 
 
 
 
 
387e130
 
 
04069f6
 
387e130
 
 
04069f6
 
387e130
04069f6
 
 
 
 
 
e9373e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04069f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75cdfc0
04069f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60efae4
 
 
04069f6
7356797
 
04069f6
7356797
04069f6
7356797
ecf3274
 
 
 
 
 
 
 
7356797
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
---
language:
- ar
library_name: sentence-transformers
tags:
- mteb
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: UBC-NLP/MARBERTv2
datasets:
- Omartificial-Intelligence-Space/Arabic-NLi-Triplet
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: ذكر متوازن بعناية يقف على قدم واحدة بالقرب من منطقة شاطئ المحيط النظيفة
  sentences:
  - رجل يقدم عرضاً
  - هناك رجل بالخارج قرب الشاطئ
  - رجل يجلس على أريكه
- source_sentence: رجل يقفز إلى سريره القذر
  sentences:
  - السرير قذر.
  - رجل يضحك أثناء غسيل الملابس
  - الرجل على القمر
- source_sentence: الفتيات بالخارج
  sentences:
  - امرأة تلف الخيط إلى كرات بجانب كومة من الكرات
  - فتيان يركبان في جولة متعة
  - >-
    ثلاث فتيات يقفون سوية في غرفة واحدة تستمع وواحدة تكتب على الحائط والثالثة
    تتحدث إليهن
- source_sentence: الرجل يرتدي قميصاً أزرق.
  sentences:
  - >-
    رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة
    حمراء مع الماء في الخلفية.
  - كتاب القصص مفتوح
  - رجل يرتدي قميص أسود يعزف على الجيتار.
- source_sentence: يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.
  sentences:
  - ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه
  - رجل يستلقي على وجهه على مقعد في الحديقة.
  - الشاب نائم بينما الأم تقود ابنتها إلى الحديقة
pipeline_tag: sentence-similarity
model-index:
- name: Omartificial-Intelligence-Space/Marbert-all-nli-triplet-Matryoshka
  results:
  - dataset:
      config: default
      name: MTEB BIOSSES (default)
      revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
      split: test
      type: mteb/biosses-sts
    metrics:
    - type: cosine_pearson
      value: 49.25240527202211
    - type: cosine_spearman
      value: 51.87708566904703
    - type: euclidean_pearson
      value: 49.790877425774696
    - type: euclidean_spearman
      value: 51.725274981021855
    - type: main_score
      value: 51.87708566904703
    - type: manhattan_pearson
      value: 52.31560776967401
    - type: manhattan_spearman
      value: 54.28979124658997
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB SICK-R (default)
      revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
      split: test
      type: mteb/sickr-sts
    metrics:
    - type: cosine_pearson
      value: 65.81089479351829
    - type: cosine_spearman
      value: 65.80163441928238
    - type: euclidean_pearson
      value: 65.2718874370746
    - type: euclidean_spearman
      value: 65.92429031695988
    - type: main_score
      value: 65.80163441928238
    - type: manhattan_pearson
      value: 65.28701419332383
    - type: manhattan_spearman
      value: 65.94229793651319
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB STS12 (default)
      revision: a0d554a64d88156834ff5ae9920b964011b16384
      split: test
      type: mteb/sts12-sts
    metrics:
    - type: cosine_pearson
      value: 65.11346939995998
    - type: cosine_spearman
      value: 63.00297824477175
    - type: euclidean_pearson
      value: 63.85320097970942
    - type: euclidean_spearman
      value: 63.25151047701848
    - type: main_score
      value: 63.00297824477175
    - type: manhattan_pearson
      value: 64.40291990853984
    - type: manhattan_spearman
      value: 63.63497232399945
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB STS13 (default)
      revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
      split: test
      type: mteb/sts13-sts
    metrics:
    - type: cosine_pearson
      value: 52.2735823521702
    - type: cosine_spearman
      value: 52.23198766098021
    - type: euclidean_pearson
      value: 54.12467577456837
    - type: euclidean_spearman
      value: 52.40014028261351
    - type: main_score
      value: 52.23198766098021
    - type: manhattan_pearson
      value: 54.38052509834607
    - type: manhattan_spearman
      value: 52.70836595958237
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB STS14 (default)
      revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
      split: test
      type: mteb/sts14-sts
    metrics:
    - type: cosine_pearson
      value: 58.55307076840419
    - type: cosine_spearman
      value: 59.2261024017655
    - type: euclidean_pearson
      value: 59.55734715751804
    - type: euclidean_spearman
      value: 60.135899681574834
    - type: main_score
      value: 59.2261024017655
    - type: manhattan_pearson
      value: 59.99274396356966
    - type: manhattan_spearman
      value: 60.44325356503041
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB STS15 (default)
      revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
      split: test
      type: mteb/sts15-sts
    metrics:
    - type: cosine_pearson
      value: 68.94418532602707
    - type: cosine_spearman
      value: 70.01912156519296
    - type: euclidean_pearson
      value: 71.67028435860581
    - type: euclidean_spearman
      value: 71.48252471922122
    - type: main_score
      value: 70.01912156519296
    - type: manhattan_pearson
      value: 71.9587452337792
    - type: manhattan_spearman
      value: 71.69160519065173
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB STS16 (default)
      revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
      split: test
      type: mteb/sts16-sts
    metrics:
    - type: cosine_pearson
      value: 62.81619254162203
    - type: cosine_spearman
      value: 64.98814526698425
    - type: euclidean_pearson
      value: 66.43531796610995
    - type: euclidean_spearman
      value: 66.53768451143964
    - type: main_score
      value: 64.98814526698425
    - type: manhattan_pearson
      value: 66.57822125651369
    - type: manhattan_spearman
      value: 66.71830390508079
    task:
      type: STS
  - dataset:
      config: ar-ar
      name: MTEB STS17 (ar-ar)
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
      split: test
      type: mteb/sts17-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 81.68055610903552
    - type: cosine_spearman
      value: 82.18125783448961
    - type: euclidean_pearson
      value: 80.5422740473486
    - type: euclidean_spearman
      value: 81.79456727036232
    - type: main_score
      value: 82.18125783448961
    - type: manhattan_pearson
      value: 80.43564733654793
    - type: manhattan_spearman
      value: 81.76103816207625
    task:
      type: STS
  - dataset:
      config: ar
      name: MTEB STS22 (ar)
      revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
      split: test
      type: mteb/sts22-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 51.33460593849487
    - type: cosine_spearman
      value: 58.07741072443786
    - type: euclidean_pearson
      value: 54.26430308336828
    - type: euclidean_spearman
      value: 58.8384539429318
    - type: main_score
      value: 58.07741072443786
    - type: manhattan_pearson
      value: 54.41587176266624
    - type: manhattan_spearman
      value: 58.831993325957086
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB STSBenchmark (default)
      revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
      split: test
      type: mteb/stsbenchmark-sts
    metrics:
    - type: cosine_pearson
      value: 61.11956207522431
    - type: cosine_spearman
      value: 61.16768766134144
    - type: euclidean_pearson
      value: 64.44141934993837
    - type: euclidean_spearman
      value: 63.450379593077066
    - type: main_score
      value: 61.16768766134144
    - type: manhattan_pearson
      value: 64.43852352892529
    - type: manhattan_spearman
      value: 63.57630045107761
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB SummEval (default)
      revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
      split: test
      type: mteb/summeval
    metrics:
    - type: cosine_pearson
      value: 29.583566160417668
    - type: cosine_spearman
      value: 29.534419950502212
    - type: dot_pearson
      value: 28.13970643170574
    - type: dot_spearman
      value: 28.907762267009073
    - type: main_score
      value: 29.534419950502212
    - type: pearson
      value: 29.583566160417668
    - type: spearman
      value: 29.534419950502212
    task:
      type: Summarization
- name: SentenceTransformer based on UBC-NLP/MARBERTv2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 768
      type: sts-test-768
    metrics:
    - type: pearson_cosine
      value: 0.611168498883907
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6116733587939157
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6443687886661206
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6358107360369792
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.644404066642609
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6345893921062774
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.4723643245352202
      name: Pearson Dot
    - type: spearman_dot
      value: 0.44844519905410135
      name: Spearman Dot
    - type: pearson_max
      value: 0.644404066642609
      name: Pearson Max
    - type: spearman_max
      value: 0.6358107360369792
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 512
      type: sts-test-512
    metrics:
    - type: pearson_cosine
      value: 0.6664570291720014
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6647687532159875
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6429976947418544
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6334753432753939
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6466249455585532
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6373181315122213
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5370129457359227
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5241649973373772
      name: Spearman Dot
    - type: pearson_max
      value: 0.6664570291720014
      name: Pearson Max
    - type: spearman_max
      value: 0.6647687532159875
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 256
      type: sts-test-256
    metrics:
    - type: pearson_cosine
      value: 0.6601248277308522
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6592739654246011
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6361644543165994
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6250621947417249
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6408426652431157
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6300109524350457
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5250513197384045
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5154779060125071
      name: Spearman Dot
    - type: pearson_max
      value: 0.6601248277308522
      name: Pearson Max
    - type: spearman_max
      value: 0.6592739654246011
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 128
      type: sts-test-128
    metrics:
    - type: pearson_cosine
      value: 0.6549481034721005
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6523201621940143
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6342700090917214
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6226791710099966
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6397224689512541
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6280973341704362
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.47240889358810917
      name: Pearson Dot
    - type: spearman_dot
      value: 0.4633669926372942
      name: Spearman Dot
    - type: pearson_max
      value: 0.6549481034721005
      name: Pearson Max
    - type: spearman_max
      value: 0.6523201621940143
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 64
      type: sts-test-64
    metrics:
    - type: pearson_cosine
      value: 0.6367217585211098
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6370191671711296
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6263730801254332
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6118927366012856
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6327699647617465
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6180184829867724
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.41169381399943167
      name: Pearson Dot
    - type: spearman_dot
      value: 0.40444222536491986
      name: Spearman Dot
    - type: pearson_max
      value: 0.6367217585211098
      name: Pearson Max
    - type: spearman_max
      value: 0.6370191671711296
      name: Spearman Max
license: apache-2.0
---

# SentenceTransformer based on UBC-NLP/MARBERTv2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2) on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2) <!-- at revision fe88db9db8ccdb0c4e1627495f405c44a5f89066 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - Omartificial-Intelligence-Space/arabic-n_li-triplet
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Omartificial-Intelligence-Space/Marbert-all-nli-triplet")
# Run inference
sentences = [
    'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.',
    'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه',
    'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6112     |
| **spearman_cosine** | **0.6117** |
| pearson_manhattan   | 0.6444     |
| spearman_manhattan  | 0.6358     |
| pearson_euclidean   | 0.6444     |
| spearman_euclidean  | 0.6346     |
| pearson_dot         | 0.4724     |
| spearman_dot        | 0.4484     |
| pearson_max         | 0.6444     |
| spearman_max        | 0.6358     |

#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6665     |
| **spearman_cosine** | **0.6648** |
| pearson_manhattan   | 0.643      |
| spearman_manhattan  | 0.6335     |
| pearson_euclidean   | 0.6466     |
| spearman_euclidean  | 0.6373     |
| pearson_dot         | 0.537      |
| spearman_dot        | 0.5242     |
| pearson_max         | 0.6665     |
| spearman_max        | 0.6648     |

#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6601     |
| **spearman_cosine** | **0.6593** |
| pearson_manhattan   | 0.6362     |
| spearman_manhattan  | 0.6251     |
| pearson_euclidean   | 0.6408     |
| spearman_euclidean  | 0.63       |
| pearson_dot         | 0.5251     |
| spearman_dot        | 0.5155     |
| pearson_max         | 0.6601     |
| spearman_max        | 0.6593     |

#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6549     |
| **spearman_cosine** | **0.6523** |
| pearson_manhattan   | 0.6343     |
| spearman_manhattan  | 0.6227     |
| pearson_euclidean   | 0.6397     |
| spearman_euclidean  | 0.6281     |
| pearson_dot         | 0.4724     |
| spearman_dot        | 0.4634     |
| pearson_max         | 0.6549     |
| spearman_max        | 0.6523     |

#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| pearson_cosine      | 0.6367    |
| **spearman_cosine** | **0.637** |
| pearson_manhattan   | 0.6264    |
| spearman_manhattan  | 0.6119    |
| pearson_euclidean   | 0.6328    |
| spearman_euclidean  | 0.618     |
| pearson_dot         | 0.4117    |
| spearman_dot        | 0.4044    |
| pearson_max         | 0.6367    |
| spearman_max        | 0.637     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Omartificial-Intelligence-Space/arabic-n_li-triplet

* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
* Size: 557,850 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                           | positive                                                                         | negative                                                                          |
  |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                           | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 7.68 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.66 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.47 tokens</li><li>max: 40 tokens</li></ul> |
* Samples:
  | anchor                                                      | positive                                    | negative                            |
  |:------------------------------------------------------------|:--------------------------------------------|:------------------------------------|
  | <code>شخص على حصان يقفز فوق طائرة معطلة</code>              | <code>شخص في الهواء الطلق، على حصان.</code> | <code>شخص في مطعم، يطلب عجة.</code> |
  | <code>أطفال يبتسمون و يلوحون للكاميرا</code>                | <code>هناك أطفال حاضرون</code>              | <code>الاطفال يتجهمون</code>        |
  | <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code>        | <code>الصبي يتزلج على الرصيف</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### Omartificial-Intelligence-Space/arabic-n_li-triplet

* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
* Size: 6,584 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                         | negative                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           | string                                                                           |
  | details | <ul><li>min: 4 tokens</li><li>mean: 14.78 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.41 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.95 tokens</li><li>max: 21 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                               | positive                                               | negative                                           |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------|
  | <code>امرأتان يتعانقان بينما يحملان حزمة</code>                                                                                                      | <code>إمرأتان يحملان حزمة</code>                       | <code>الرجال يتشاجرون خارج مطعم</code>             |
  | <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> |
  | <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code>                                                                             | <code>رجل يبيع الدونات لعميل</code>                    | <code>امرأة تشرب قهوتها في مقهى صغير</code>        |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|:------:|:----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
| 0.0229 | 200  | 25.0771       | -                            | -                            | -                            | -                           | -                            |
| 0.0459 | 400  | 9.1435        | -                            | -                            | -                            | -                           | -                            |
| 0.0688 | 600  | 8.0492        | -                            | -                            | -                            | -                           | -                            |
| 0.0918 | 800  | 7.1378        | -                            | -                            | -                            | -                           | -                            |
| 0.1147 | 1000 | 7.6249        | -                            | -                            | -                            | -                           | -                            |
| 0.1377 | 1200 | 7.3604        | -                            | -                            | -                            | -                           | -                            |
| 0.1606 | 1400 | 6.5783        | -                            | -                            | -                            | -                           | -                            |
| 0.1835 | 1600 | 6.4145        | -                            | -                            | -                            | -                           | -                            |
| 0.2065 | 1800 | 6.1781        | -                            | -                            | -                            | -                           | -                            |
| 0.2294 | 2000 | 6.2375        | -                            | -                            | -                            | -                           | -                            |
| 0.2524 | 2200 | 6.2587        | -                            | -                            | -                            | -                           | -                            |
| 0.2753 | 2400 | 6.0826        | -                            | -                            | -                            | -                           | -                            |
| 0.2983 | 2600 | 6.1514        | -                            | -                            | -                            | -                           | -                            |
| 0.3212 | 2800 | 5.6949        | -                            | -                            | -                            | -                           | -                            |
| 0.3442 | 3000 | 6.0062        | -                            | -                            | -                            | -                           | -                            |
| 0.3671 | 3200 | 5.7551        | -                            | -                            | -                            | -                           | -                            |
| 0.3900 | 3400 | 5.658         | -                            | -                            | -                            | -                           | -                            |
| 0.4130 | 3600 | 5.7135        | -                            | -                            | -                            | -                           | -                            |
| 0.4359 | 3800 | 5.3909        | -                            | -                            | -                            | -                           | -                            |
| 0.4589 | 4000 | 5.5068        | -                            | -                            | -                            | -                           | -                            |
| 0.4818 | 4200 | 5.2261        | -                            | -                            | -                            | -                           | -                            |
| 0.5048 | 4400 | 5.1674        | -                            | -                            | -                            | -                           | -                            |
| 0.5277 | 4600 | 5.0427        | -                            | -                            | -                            | -                           | -                            |
| 0.5506 | 4800 | 5.3824        | -                            | -                            | -                            | -                           | -                            |
| 0.5736 | 5000 | 5.3063        | -                            | -                            | -                            | -                           | -                            |
| 0.5965 | 5200 | 5.2174        | -                            | -                            | -                            | -                           | -                            |
| 0.6195 | 5400 | 5.2116        | -                            | -                            | -                            | -                           | -                            |
| 0.6424 | 5600 | 5.2226        | -                            | -                            | -                            | -                           | -                            |
| 0.6654 | 5800 | 5.2051        | -                            | -                            | -                            | -                           | -                            |
| 0.6883 | 6000 | 5.204         | -                            | -                            | -                            | -                           | -                            |
| 0.7113 | 6200 | 5.154         | -                            | -                            | -                            | -                           | -                            |
| 0.7342 | 6400 | 5.0236        | -                            | -                            | -                            | -                           | -                            |
| 0.7571 | 6600 | 4.9476        | -                            | -                            | -                            | -                           | -                            |
| 0.7801 | 6800 | 4.0164        | -                            | -                            | -                            | -                           | -                            |
| 0.8030 | 7000 | 3.5707        | -                            | -                            | -                            | -                           | -                            |
| 0.8260 | 7200 | 3.3586        | -                            | -                            | -                            | -                           | -                            |
| 0.8489 | 7400 | 3.2376        | -                            | -                            | -                            | -                           | -                            |
| 0.8719 | 7600 | 3.0282        | -                            | -                            | -                            | -                           | -                            |
| 0.8948 | 7800 | 2.901         | -                            | -                            | -                            | -                           | -                            |
| 0.9177 | 8000 | 2.9371        | -                            | -                            | -                            | -                           | -                            |
| 0.9407 | 8200 | 2.8362        | -                            | -                            | -                            | -                           | -                            |
| 0.9636 | 8400 | 2.8121        | -                            | -                            | -                            | -                           | -                            |
| 0.9866 | 8600 | 2.7105        | -                            | -                            | -                            | -                           | -                            |
| 1.0    | 8717 | -             | 0.6523                       | 0.6593                       | 0.6648                       | 0.6370                      | 0.6117                       |


### Framework Versions
- Python: 3.9.18
- Sentence Transformers: 3.0.1
- Transformers: 4.40.0
- PyTorch: 2.2.2+cu121
- Accelerate: 0.26.1
- Datasets: 2.19.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```
## <span style="color:blue">Acknowledgments</span>

The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models.

```markdown
## Citation

If you use the Arabic Matryoshka Embeddings Model, please cite it as follows:

```bibtex
@misc{nacar2024enhancingsemanticsimilarityunderstanding,
      title={Enhancing Semantic Similarity Understanding in Arabic NLP with Nested Embedding Learning}, 
      author={Omer Nacar and Anis Koubaa},
      year={2024},
      eprint={2407.21139},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2407.21139}, 
}