File size: 29,677 Bytes
854f0d0 216282e 854f0d0 216282e 854f0d0 216282e 854f0d0 c534da1 854f0d0 216282e 854f0d0 216282e 854f0d0 216282e 854f0d0 216282e 854f0d0 216282e 854f0d0 216282e 854f0d0 216282e 854f0d0 216282e 854f0d0 216282e 854f0d0 216282e 854f0d0 216282e 854f0d0 216282e 854f0d0 216282e 854f0d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
import os
import logging
import argparse
import numpy as np
from shutil import copyfile
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from rich import print
from tqdm import tqdm
from pyhocon import ConfigFactory
import sys
sys.path.append(os.path.dirname(__file__))
from models.fields import SingleVarianceNetwork
from models.featurenet import FeatureNet
from models.trainer_generic import GenericTrainer
from models.sparse_sdf_network import SparseSdfNetwork
from models.rendering_network import GeneralRenderingNetwork
from data.blender_general_narrow_all_eval_new_data import BlenderPerView
from datetime import datetime
class Runner:
def __init__(self, conf_path, mode='train', is_continue=False,
is_restore=False, restore_lod0=False, local_rank=0):
# Initial setting
self.device = torch.device('cuda:%d' % local_rank)
# self.device = torch.device('cuda')
self.num_devices = torch.cuda.device_count()
self.is_continue = is_continue or (mode == "export_mesh")
self.is_restore = is_restore
self.restore_lod0 = restore_lod0
self.mode = mode
self.model_list = []
self.logger = logging.getLogger('exp_logger')
print("detected %d GPUs" % self.num_devices)
self.conf_path = conf_path
self.conf = ConfigFactory.parse_file(conf_path)
self.timestamp = None
if not self.is_continue:
self.timestamp = '_{:%Y_%m_%d_%H_%M_%S}'.format(datetime.now())
self.base_exp_dir = self.conf['general.base_exp_dir'] + self.timestamp # jha comment this when testing and use this when training
else:
self.base_exp_dir = self.conf['general.base_exp_dir']
self.conf['general.base_exp_dir'] = self.base_exp_dir # jha use this when testing
print("base_exp_dir: " + self.base_exp_dir)
os.makedirs(self.base_exp_dir, exist_ok=True)
self.iter_step = 0
self.val_step = 0
# trainning parameters
self.end_iter = self.conf.get_int('train.end_iter')
self.save_freq = self.conf.get_int('train.save_freq')
self.report_freq = self.conf.get_int('train.report_freq')
self.val_freq = self.conf.get_int('train.val_freq')
self.val_mesh_freq = self.conf.get_int('train.val_mesh_freq')
self.batch_size = self.num_devices # use DataParallel to warp
self.validate_resolution_level = self.conf.get_int('train.validate_resolution_level')
self.learning_rate = self.conf.get_float('train.learning_rate')
self.learning_rate_milestone = self.conf.get_list('train.learning_rate_milestone')
self.learning_rate_factor = self.conf.get_float('train.learning_rate_factor')
self.use_white_bkgd = self.conf.get_bool('train.use_white_bkgd')
self.N_rays = self.conf.get_int('train.N_rays')
# warmup params for sdf gradient
self.anneal_start_lod0 = self.conf.get_float('train.anneal_start', default=0)
self.anneal_end_lod0 = self.conf.get_float('train.anneal_end', default=0)
self.anneal_start_lod1 = self.conf.get_float('train.anneal_start_lod1', default=0)
self.anneal_end_lod1 = self.conf.get_float('train.anneal_end_lod1', default=0)
self.writer = None
# Networks
self.num_lods = self.conf.get_int('model.num_lods')
self.rendering_network_outside = None
self.sdf_network_lod0 = None
self.sdf_network_lod1 = None
self.variance_network_lod0 = None
self.variance_network_lod1 = None
self.rendering_network_lod0 = None
self.rendering_network_lod1 = None
self.pyramid_feature_network = None # extract 2d pyramid feature maps from images, used for geometry
self.pyramid_feature_network_lod1 = None # may use different feature network for different lod
# * pyramid_feature_network
self.pyramid_feature_network = FeatureNet().to(self.device)
self.sdf_network_lod0 = SparseSdfNetwork(**self.conf['model.sdf_network_lod0']).to(self.device)
self.variance_network_lod0 = SingleVarianceNetwork(**self.conf['model.variance_network']).to(self.device)
if self.num_lods > 1:
self.sdf_network_lod1 = SparseSdfNetwork(**self.conf['model.sdf_network_lod1']).to(self.device)
self.variance_network_lod1 = SingleVarianceNetwork(**self.conf['model.variance_network']).to(self.device)
self.rendering_network_lod0 = GeneralRenderingNetwork(**self.conf['model.rendering_network']).to(
self.device)
if self.num_lods > 1:
self.pyramid_feature_network_lod1 = FeatureNet().to(self.device)
self.rendering_network_lod1 = GeneralRenderingNetwork(
**self.conf['model.rendering_network_lod1']).to(self.device)
if self.mode == 'export_mesh' or self.mode == 'val':
# base_exp_dir_to_store = os.path.join(self.base_exp_dir, '{:%Y_%m_%d_%H_%M_%S}'.format(datetime.now()))
base_exp_dir_to_store = os.path.join("../", args.specific_dataset_name) #"../gradio_tmp" # MODIFIED
else:
base_exp_dir_to_store = self.base_exp_dir
print(f"Store in: {base_exp_dir_to_store}")
# Renderer model
self.trainer = GenericTrainer(
self.rendering_network_outside,
self.pyramid_feature_network,
self.pyramid_feature_network_lod1,
self.sdf_network_lod0,
self.sdf_network_lod1,
self.variance_network_lod0,
self.variance_network_lod1,
self.rendering_network_lod0,
self.rendering_network_lod1,
**self.conf['model.trainer'],
timestamp=self.timestamp,
base_exp_dir=base_exp_dir_to_store,
conf=self.conf)
self.data_setup() # * data setup
self.optimizer_setup()
# Load checkpoint
latest_model_name = None
if self.is_continue:
model_list_raw = os.listdir(os.path.join(self.base_exp_dir, 'checkpoints'))
model_list = []
for model_name in model_list_raw:
if model_name.startswith('ckpt'):
if model_name[-3:] == 'pth': # and int(model_name[5:-4]) <= self.end_iter:
model_list.append(model_name)
model_list.sort()
latest_model_name = model_list[-1]
if latest_model_name is not None:
self.logger.info('Find checkpoint: {}'.format(latest_model_name))
self.load_checkpoint(latest_model_name)
self.trainer = torch.nn.DataParallel(self.trainer).to(self.device)
if self.mode[:5] == 'train':
self.file_backup()
def optimizer_setup(self):
self.params_to_train = self.trainer.get_trainable_params()
self.optimizer = torch.optim.Adam(self.params_to_train, lr=self.learning_rate)
def data_setup(self):
"""
if use ddp, use setup() not prepare_data(),
prepare_data() only called on 1 GPU/TPU in distributed
:return:
"""
self.train_dataset = BlenderPerView(
root_dir=self.conf['dataset.trainpath'],
split=self.conf.get_string('dataset.train_split', default='train'),
split_filepath=self.conf.get_string('dataset.train_split_filepath', default=None),
n_views=self.conf['dataset.nviews'],
downSample=self.conf['dataset.imgScale_train'],
N_rays=self.N_rays,
batch_size=self.batch_size,
clean_image=True, # True for training
importance_sample=self.conf.get_bool('dataset.importance_sample', default=False),
specific_dataset_name = args.specific_dataset_name
)
self.val_dataset = BlenderPerView(
root_dir=self.conf['dataset.valpath'],
split=self.conf.get_string('dataset.test_split', default='test'),
split_filepath=self.conf.get_string('dataset.val_split_filepath', default=None),
n_views=3,
downSample=self.conf['dataset.imgScale_test'],
N_rays=self.N_rays,
batch_size=self.batch_size,
clean_image=self.conf.get_bool('dataset.mask_out_image',
default=False) if self.mode != 'train' else False,
importance_sample=self.conf.get_bool('dataset.importance_sample', default=False),
test_ref_views=self.conf.get_list('dataset.test_ref_views', default=[]),
specific_dataset_name = args.specific_dataset_name
)
# item = self.train_dataset.__getitem__(0)
self.train_dataloader = DataLoader(self.train_dataset,
shuffle=True,
num_workers=4 * self.batch_size,
# num_workers=1,
batch_size=self.batch_size,
pin_memory=True,
drop_last=True
)
self.val_dataloader = DataLoader(self.val_dataset,
# shuffle=False if self.mode == 'train' else True,
shuffle=False,
num_workers=4 * self.batch_size,
# num_workers=1,
batch_size=self.batch_size,
pin_memory=True,
drop_last=False
)
self.val_dataloader_iterator = iter(self.val_dataloader) # - should be after "reconstruct_metas_for_gru_fusion"
def train(self):
self.writer = SummaryWriter(log_dir=os.path.join(self.base_exp_dir, 'logs'))
res_step = self.end_iter - self.iter_step
dataloader = self.train_dataloader
epochs = int(1 + res_step // len(dataloader))
self.adjust_learning_rate()
print("starting training learning rate: {:.5f}".format(self.optimizer.param_groups[0]['lr']))
background_rgb = None
if self.use_white_bkgd:
# background_rgb = torch.ones([1, 3]).to(self.device)
background_rgb = 1.0
for epoch_i in range(epochs):
print("current epoch %d" % epoch_i)
dataloader = tqdm(dataloader)
for batch in dataloader:
# print("Checker1:, fetch data")
batch['batch_idx'] = torch.tensor([x for x in range(self.batch_size)]) # used to get meta
# - warmup params
if self.num_lods == 1:
alpha_inter_ratio_lod0 = self.get_alpha_inter_ratio(self.anneal_start_lod0, self.anneal_end_lod0)
else:
alpha_inter_ratio_lod0 = 1.
alpha_inter_ratio_lod1 = self.get_alpha_inter_ratio(self.anneal_start_lod1, self.anneal_end_lod1)
losses = self.trainer(
batch,
background_rgb=background_rgb,
alpha_inter_ratio_lod0=alpha_inter_ratio_lod0,
alpha_inter_ratio_lod1=alpha_inter_ratio_lod1,
iter_step=self.iter_step,
mode='train',
)
loss_types = ['loss_lod0', 'loss_lod1']
# print("[TEST]: weights_sum in trainer return", losses['losses_lod0']['weights_sum'].mean())
losses_lod0 = losses['losses_lod0']
losses_lod1 = losses['losses_lod1']
# import ipdb; ipdb.set_trace()
loss = 0
for loss_type in loss_types:
if losses[loss_type] is not None:
loss = loss + losses[loss_type].mean()
# print("Checker4:, begin BP")
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.params_to_train, 1.0)
self.optimizer.step()
# print("Checker5:, end BP")
self.iter_step += 1
if self.iter_step % self.report_freq == 0:
self.writer.add_scalar('Loss/loss', loss, self.iter_step)
if losses_lod0 is not None:
self.writer.add_scalar('Loss/d_loss_lod0',
losses_lod0['depth_loss'].mean() if losses_lod0 is not None else 0,
self.iter_step)
self.writer.add_scalar('Loss/sparse_loss_lod0',
losses_lod0[
'sparse_loss'].mean() if losses_lod0 is not None else 0,
self.iter_step)
self.writer.add_scalar('Loss/color_loss_lod0',
losses_lod0['color_fine_loss'].mean()
if losses_lod0['color_fine_loss'] is not None else 0,
self.iter_step)
self.writer.add_scalar('statis/psnr_lod0',
losses_lod0['psnr'].mean()
if losses_lod0['psnr'] is not None else 0,
self.iter_step)
self.writer.add_scalar('param/variance_lod0',
1. / torch.exp(self.variance_network_lod0.variance * 10),
self.iter_step)
self.writer.add_scalar('param/eikonal_loss', losses_lod0['gradient_error_loss'].mean() if losses_lod0 is not None else 0,
self.iter_step)
######## - lod 1
if self.num_lods > 1:
self.writer.add_scalar('Loss/d_loss_lod1',
losses_lod1['depth_loss'].mean() if losses_lod1 is not None else 0,
self.iter_step)
self.writer.add_scalar('Loss/sparse_loss_lod1',
losses_lod1[
'sparse_loss'].mean() if losses_lod1 is not None else 0,
self.iter_step)
self.writer.add_scalar('Loss/color_loss_lod1',
losses_lod1['color_fine_loss'].mean()
if losses_lod1['color_fine_loss'] is not None else 0,
self.iter_step)
self.writer.add_scalar('statis/sdf_mean_lod1',
losses_lod1['sdf_mean'].mean() if losses_lod1 is not None else 0,
self.iter_step)
self.writer.add_scalar('statis/psnr_lod1',
losses_lod1['psnr'].mean()
if losses_lod1['psnr'] is not None else 0,
self.iter_step)
self.writer.add_scalar('statis/sparseness_0.01_lod1',
losses_lod1['sparseness_1'].mean()
if losses_lod1['sparseness_1'] is not None else 0,
self.iter_step)
self.writer.add_scalar('statis/sparseness_0.02_lod1',
losses_lod1['sparseness_2'].mean()
if losses_lod1['sparseness_2'] is not None else 0,
self.iter_step)
self.writer.add_scalar('param/variance_lod1',
1. / torch.exp(self.variance_network_lod1.variance * 10),
self.iter_step)
print(self.base_exp_dir)
print(
'iter:{:8>d} '
'loss = {:.4f} '
'd_loss_lod0 = {:.4f} '
'color_loss_lod0 = {:.4f} '
'sparse_loss_lod0= {:.4f} '
'd_loss_lod1 = {:.4f} '
'color_loss_lod1 = {:.4f} '
' lr = {:.5f}'.format(
self.iter_step, loss,
losses_lod0['depth_loss'].mean() if losses_lod0 is not None else 0,
losses_lod0['color_fine_loss'].mean() if losses_lod0 is not None else 0,
losses_lod0['sparse_loss'].mean() if losses_lod0 is not None else 0,
losses_lod1['depth_loss'].mean() if losses_lod1 is not None else 0,
losses_lod1['color_fine_loss'].mean() if losses_lod1 is not None else 0,
self.optimizer.param_groups[0]['lr']))
print('alpha_inter_ratio_lod0 = {:.4f} alpha_inter_ratio_lod1 = {:.4f}\n'.format(
alpha_inter_ratio_lod0, alpha_inter_ratio_lod1))
if losses_lod0 is not None:
# print("[TEST]: weights_sum in print", losses_lod0['weights_sum'].mean())
# import ipdb; ipdb.set_trace()
print(
'iter:{:8>d} '
'variance = {:.5f} '
'weights_sum = {:.4f} '
'weights_sum_fg = {:.4f} '
'alpha_sum = {:.4f} '
'sparse_weight= {:.4f} '
'background_loss = {:.4f} '
'background_weight = {:.4f} '
.format(
self.iter_step,
losses_lod0['variance'].mean(),
losses_lod0['weights_sum'].mean(),
losses_lod0['weights_sum_fg'].mean(),
losses_lod0['alpha_sum'].mean(),
losses_lod0['sparse_weight'].mean(),
losses_lod0['fg_bg_loss'].mean(),
losses_lod0['fg_bg_weight'].mean(),
))
if losses_lod1 is not None:
print(
'iter:{:8>d} '
'variance = {:.5f} '
' weights_sum = {:.4f} '
'alpha_sum = {:.4f} '
'fg_bg_loss = {:.4f} '
'fg_bg_weight = {:.4f} '
'sparse_weight= {:.4f} '
'fg_bg_loss = {:.4f} '
'fg_bg_weight = {:.4f} '
.format(
self.iter_step,
losses_lod1['variance'].mean(),
losses_lod1['weights_sum'].mean(),
losses_lod1['alpha_sum'].mean(),
losses_lod1['fg_bg_loss'].mean(),
losses_lod1['fg_bg_weight'].mean(),
losses_lod1['sparse_weight'].mean(),
losses_lod1['fg_bg_loss'].mean(),
losses_lod1['fg_bg_weight'].mean(),
))
if self.iter_step % self.save_freq == 0:
self.save_checkpoint()
if self.iter_step % self.val_freq == 0:
self.validate()
# - ajust learning rate
self.adjust_learning_rate()
def adjust_learning_rate(self):
# - ajust learning rate, cosine learning schedule
learning_rate = (np.cos(np.pi * self.iter_step / self.end_iter) + 1.0) * 0.5 * 0.9 + 0.1
learning_rate = self.learning_rate * learning_rate
for g in self.optimizer.param_groups:
g['lr'] = learning_rate
def get_alpha_inter_ratio(self, start, end):
if end == 0.0:
return 1.0
elif self.iter_step < start:
return 0.0
else:
return np.min([1.0, (self.iter_step - start) / (end - start)])
def file_backup(self):
# copy python file
dir_lis = self.conf['general.recording']
os.makedirs(os.path.join(self.base_exp_dir, 'recording'), exist_ok=True)
for dir_name in dir_lis:
cur_dir = os.path.join(self.base_exp_dir, 'recording', dir_name)
os.makedirs(cur_dir, exist_ok=True)
files = os.listdir(dir_name)
for f_name in files:
if f_name[-3:] == '.py':
copyfile(os.path.join(dir_name, f_name), os.path.join(cur_dir, f_name))
# copy configs
copyfile(self.conf_path, os.path.join(self.base_exp_dir, 'recording', 'config.conf'))
def load_checkpoint(self, checkpoint_name):
def load_state_dict(network, checkpoint, comment):
if network is not None:
try:
pretrained_dict = checkpoint[comment]
model_dict = network.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
network.load_state_dict(pretrained_dict)
except:
print(comment + " load fails")
checkpoint = torch.load(os.path.join(self.base_exp_dir, 'checkpoints', checkpoint_name),
map_location=self.device)
load_state_dict(self.rendering_network_outside, checkpoint, 'rendering_network_outside')
load_state_dict(self.sdf_network_lod0, checkpoint, 'sdf_network_lod0')
load_state_dict(self.sdf_network_lod1, checkpoint, 'sdf_network_lod1')
load_state_dict(self.pyramid_feature_network, checkpoint, 'pyramid_feature_network')
load_state_dict(self.pyramid_feature_network_lod1, checkpoint, 'pyramid_feature_network_lod1')
load_state_dict(self.variance_network_lod0, checkpoint, 'variance_network_lod0')
load_state_dict(self.variance_network_lod1, checkpoint, 'variance_network_lod1')
load_state_dict(self.rendering_network_lod0, checkpoint, 'rendering_network_lod0')
load_state_dict(self.rendering_network_lod1, checkpoint, 'rendering_network_lod1')
if self.restore_lod0: # use the trained lod0 networks to initialize lod1 networks
load_state_dict(self.sdf_network_lod1, checkpoint, 'sdf_network_lod0')
load_state_dict(self.pyramid_feature_network_lod1, checkpoint, 'pyramid_feature_network')
load_state_dict(self.rendering_network_lod1, checkpoint, 'rendering_network_lod0')
if self.is_continue and (not self.restore_lod0):
try:
self.optimizer.load_state_dict(checkpoint['optimizer'])
except:
print("load optimizer fails")
self.iter_step = checkpoint['iter_step']
self.val_step = checkpoint['val_step'] if 'val_step' in checkpoint.keys() else 0
self.logger.info('End')
def save_checkpoint(self):
def save_state_dict(network, checkpoint, comment):
if network is not None:
checkpoint[comment] = network.state_dict()
checkpoint = {
'optimizer': self.optimizer.state_dict(),
'iter_step': self.iter_step,
'val_step': self.val_step,
}
save_state_dict(self.sdf_network_lod0, checkpoint, "sdf_network_lod0")
save_state_dict(self.sdf_network_lod1, checkpoint, "sdf_network_lod1")
save_state_dict(self.rendering_network_outside, checkpoint, 'rendering_network_outside')
save_state_dict(self.rendering_network_lod0, checkpoint, "rendering_network_lod0")
save_state_dict(self.rendering_network_lod1, checkpoint, "rendering_network_lod1")
save_state_dict(self.variance_network_lod0, checkpoint, 'variance_network_lod0')
save_state_dict(self.variance_network_lod1, checkpoint, 'variance_network_lod1')
save_state_dict(self.pyramid_feature_network, checkpoint, 'pyramid_feature_network')
save_state_dict(self.pyramid_feature_network_lod1, checkpoint, 'pyramid_feature_network_lod1')
os.makedirs(os.path.join(self.base_exp_dir, 'checkpoints'), exist_ok=True)
torch.save(checkpoint,
os.path.join(self.base_exp_dir, 'checkpoints', 'ckpt_{:0>6d}.pth'.format(self.iter_step)))
def validate(self, resolution_level=-1):
# validate image
print("iter_step: ", self.iter_step)
self.logger.info('Validate begin')
self.val_step += 1
try:
batch = next(self.val_dataloader_iterator)
except:
self.val_dataloader_iterator = iter(self.val_dataloader) # reset
batch = next(self.val_dataloader_iterator)
background_rgb = None
if self.use_white_bkgd:
# background_rgb = torch.ones([1, 3]).to(self.device)
background_rgb = 1.0
batch['batch_idx'] = torch.tensor([x for x in range(self.batch_size)])
# - warmup params
if self.num_lods == 1:
alpha_inter_ratio_lod0 = self.get_alpha_inter_ratio(self.anneal_start_lod0, self.anneal_end_lod0)
else:
alpha_inter_ratio_lod0 = 1.
alpha_inter_ratio_lod1 = self.get_alpha_inter_ratio(self.anneal_start_lod1, self.anneal_end_lod1)
self.trainer(
batch,
background_rgb=background_rgb,
alpha_inter_ratio_lod0=alpha_inter_ratio_lod0,
alpha_inter_ratio_lod1=alpha_inter_ratio_lod1,
iter_step=self.iter_step,
save_vis=True,
mode='val',
)
def export_mesh(self, resolution_level=-1):
print("iter_step: ", self.iter_step)
self.logger.info('Validate begin')
self.val_step += 1
try:
batch = next(self.val_dataloader_iterator)
except:
self.val_dataloader_iterator = iter(self.val_dataloader) # reset
batch = next(self.val_dataloader_iterator)
background_rgb = None
if self.use_white_bkgd:
background_rgb = 1.0
batch['batch_idx'] = torch.tensor([x for x in range(self.batch_size)])
# - warmup params
if self.num_lods == 1:
alpha_inter_ratio_lod0 = self.get_alpha_inter_ratio(self.anneal_start_lod0, self.anneal_end_lod0)
else:
alpha_inter_ratio_lod0 = 1.
alpha_inter_ratio_lod1 = self.get_alpha_inter_ratio(self.anneal_start_lod1, self.anneal_end_lod1)
self.trainer(
batch,
background_rgb=background_rgb,
alpha_inter_ratio_lod0=alpha_inter_ratio_lod0,
alpha_inter_ratio_lod1=alpha_inter_ratio_lod1,
iter_step=self.iter_step,
save_vis=True,
mode='export_mesh',
)
if __name__ == '__main__':
# torch.set_default_tensor_type('torch.cuda.FloatTensor')
torch.set_default_dtype(torch.float32)
FORMAT = "[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s"
logging.basicConfig(level=logging.INFO, format=FORMAT)
parser = argparse.ArgumentParser()
parser.add_argument('--conf', type=str, default='./confs/base.conf')
parser.add_argument('--mode', type=str, default='train')
parser.add_argument('--threshold', type=float, default=0.0)
parser.add_argument('--is_continue', default=False, action="store_true")
parser.add_argument('--is_restore', default=False, action="store_true")
parser.add_argument('--is_finetune', default=False, action="store_true")
parser.add_argument('--train_from_scratch', default=False, action="store_true")
parser.add_argument('--restore_lod0', default=False, action="store_true")
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--specific_dataset_name', type=str, default='GSO')
args = parser.parse_args()
torch.cuda.set_device(args.local_rank)
torch.backends.cudnn.benchmark = True # ! make training 2x faster
runner = Runner(args.conf, args.mode, args.is_continue, args.is_restore, args.restore_lod0,
args.local_rank)
if args.mode == 'train':
runner.train()
elif args.mode == 'val':
for i in range(len(runner.val_dataset)):
runner.validate()
elif args.mode == 'export_mesh':
for i in range(len(runner.val_dataset)):
runner.export_mesh()
|