--- license: cc-by-4.0 tags: - Text-to-sql library_name: transformers --- ### Llama3-OGSQL-8B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657ad4e2583493c1d1efb05b/YzOlyYJEeD4HWAIhcdHGB.png) ### Model Description Llama3-OGSQL-8B was fine-tuned on the most recent and state of the art models (LLAMA 3) for the task of converting natural language text into SQL queries. The model has been trained on more than 270 million tokens, ensuring robust performance and high accuracy in SQL generation tasks. - **Model type**: Auto-regressive language model - **Language(s) (NLP)**: SQL (target language for generation) - **Finetuned from model**: Llama3-8B ## Use Case OGSQL-7B is designed to facilitate the conversion of natural language queries into structured SQL commands, aiding in database querying without the need for manual SQL knowledge. ## How to Get Started with the Model ```python # Example code to load and use the model from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_name = "Llama3-OGSQL-8B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) def generate_sql(query): inputs = tokenizer.encode(query, return_tensors="pt") outputs = model.generate(inputs) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Example use query = """ using this context: -- Create Customers Table CREATE TABLE Customers ( customer_id INTEGER PRIMARY KEY, name TEXT NOT NULL, email TEXT, join_date DATE ); -- Create Products Table CREATE TABLE Products ( product_id INTEGER PRIMARY KEY, name TEXT NOT NULL, price DECIMAL(10, 2) ); -- Create Orders Table CREATE TABLE Orders ( order_id INTEGER PRIMARY KEY, customer_id INTEGER, product_id INTEGER, order_date DATE, quantity INTEGER, total_price DECIMAL(10, 2), FOREIGN KEY (customer_id) REFERENCES Customers(customer_id), FOREIGN KEY (product_id) REFERENCES Products(product_id) ); show me all the orders from last month , sort by date """ print(generate_sql(query)) ``` ## alternatively you can use this notebook: [![Colab notebook](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1pQuIuCdoFMG76AH3BNZzep8PgRaZkkYS?usp=sharing)