Onegafer commited on
Commit
4dad37f
·
1 Parent(s): 4354dd0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision
5
+ - depth-estimation
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: glpn-nyu-finetuned-diode-230530-193901
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # glpn-nyu-finetuned-diode-230530-193901
16
+
17
+ This model is a fine-tuned version of [vinvino02/glpn-nyu](https://huggingface.co/vinvino02/glpn-nyu) on the diode-subset dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.5356
20
+ - Mae: 3.1497
21
+ - Rmse: 3.6237
22
+ - Abs Rel: 6.0096
23
+ - Log Mae: 0.6926
24
+ - Log Rmse: 0.8186
25
+ - Delta1: 0.3020
26
+ - Delta2: 0.3077
27
+ - Delta3: 0.3094
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 1e-05
47
+ - train_batch_size: 24
48
+ - eval_batch_size: 48
49
+ - seed: 2022
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_ratio: 0.1
53
+ - num_epochs: 10
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Mae | Rmse | Abs Rel | Log Mae | Log Rmse | Delta1 | Delta2 | Delta3 |
59
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:-------:|:--------:|:------:|:------:|:------:|
60
+ | No log | 1.0 | 1 | 1.5604 | 3.2768 | 3.8048 | 6.3111 | 0.7037 | 0.8347 | 0.2996 | 0.3073 | 0.3091 |
61
+ | No log | 2.0 | 2 | 1.5559 | 3.2536 | 3.7731 | 6.2584 | 0.7017 | 0.8319 | 0.2998 | 0.3073 | 0.3092 |
62
+ | No log | 3.0 | 3 | 1.5513 | 3.2298 | 3.7401 | 6.2034 | 0.6997 | 0.8290 | 0.3002 | 0.3074 | 0.3092 |
63
+ | No log | 4.0 | 4 | 1.5469 | 3.2076 | 3.7083 | 6.1506 | 0.6977 | 0.8262 | 0.3006 | 0.3075 | 0.3093 |
64
+ | No log | 5.0 | 5 | 1.5434 | 3.1894 | 3.6815 | 6.1060 | 0.6961 | 0.8238 | 0.3011 | 0.3075 | 0.3093 |
65
+ | No log | 6.0 | 6 | 1.5407 | 3.1757 | 3.6614 | 6.0725 | 0.6949 | 0.8220 | 0.3015 | 0.3076 | 0.3094 |
66
+ | No log | 7.0 | 7 | 1.5387 | 3.1652 | 3.6460 | 6.0468 | 0.6940 | 0.8207 | 0.3017 | 0.3076 | 0.3094 |
67
+ | No log | 8.0 | 8 | 1.5371 | 3.1574 | 3.6348 | 6.0281 | 0.6933 | 0.8196 | 0.3019 | 0.3077 | 0.3094 |
68
+ | No log | 9.0 | 9 | 1.5361 | 3.1523 | 3.6273 | 6.0157 | 0.6928 | 0.8190 | 0.3020 | 0.3077 | 0.3094 |
69
+ | No log | 10.0 | 10 | 1.5356 | 3.1497 | 3.6237 | 6.0096 | 0.6926 | 0.8186 | 0.3020 | 0.3077 | 0.3094 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.29.2
75
+ - Pytorch 2.0.1+cu118
76
+ - Tokenizers 0.13.3